Oracle® Retail Job Orchestration and Scheduler
(JOS)

Implementation Guide
Release 16.0.21

May 2017

ORACLE

Oracle® Retail Job Orchestration and Scheduler (JOS) Implementation Guide, Release 16.0.21
Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Primary Author:

Contributors:

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as
expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or
display any part, in any form, or by any means. Reverse engineering, disassembly, or
decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be
error-free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the hardware, and /or documentation, delivered to U.S.
Government end users are "commercial computer software" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication,
disclosure, modification, and adaptation of the programs, including any operating system,
integrated software, any programs installed on the hardware, and /or documentation, shall be
subject to license terms and license restrictions applicable to the programs. No other rights are
granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications,
including applications that may create a risk of personal injury. If you use this software or
hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in
dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information on content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible
for and expressly disclaim all warranties of any kind with respect to third-party content, products,
and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an
applicable agreement between you and Oracle.

Value-Added Reseller (VAR) Language

Oracle Retail VAR Applications

The following restrictions and provisions only apply to the programs referred to in this section and
licensed to you. You acknowledge that the programs may contain third party software (VAR
applications) licensed to Oracle. Depending upon your product and its version number, the VAR
applications may include:

(i) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail
Data Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications.

(ii) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of
Kirkland, Washington, to Oracle and imbedded in Oracle Retail Mobile Store Inventory
Management.

(iii) the software component known as Access Via™ licensed by Access Via of Seattle, Washington,
and imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags.

(iv) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of
San Jose, California, and imbedded in Oracle Retail Promotion Planning & Optimization
application.

You acknowledge and confirm that Oracle grants you use of only the object code of the VAR
Applications. Oracle will not deliver source code to the VAR Applications to you. Notwithstanding
any other term or condition of the agreement and this ordering document, you shall not cause or
permit alteration of any VAR Applications. For purposes of this section, "alteration" refers to all
alterations, translations, upgrades, enhancements, customizations or modifications of all or any
portion of the VAR Applications including all reconfigurations, reassembly or reverse assembly, re-
engineering or reverse engineering and recompilations or reverse compilations of the VAR
Applications or any derivatives of the VAR Applications. You acknowledge that it shall be a breach
of the agreement to utilize the relationship, and/or confidential information of the VAR
Applications for purposes of competitive discovery.

The VAR Applications contain trade secrets of Oracle and Oracle's licensors and Customer shall
not attempt, cause, or permit the alteration, decompilation, reverse engineering, disassembly or
other reduction of the VAR Applications to a human perceivable form. Oracle reserves the right to
replace, with functional equivalent software, any of the VAR Applications in future releases of the
applicable program.

Contents

SENA US YOUE COMIMENTS ...uiiiiiiiiiiiiiiiieia e ettt e e e e e e e aiabe et e e e e e e s aabbbeeeea e e s e annbeseeeeaeeaananes xi
PIEIACE ..t Xiii
Documentation AcCesSIDILIEYccoeueuiiiiiiriiiiccccccreeee e xiii
Related DOCUIMENEScccviiiiiieieeieeteet ettt et s te e aeeste b e eareessesre e bs e beesseenseerneses xiii
CUSOMET SUPPOTL...oiviiiiiiiiiiicc s xiii
Improved Process for Oracle Retail Documentation Correctionsccccocevvvvivinnnnne xiii
Oracle Retail Documentation on the Oracle Technology Network...........ccccccovninie. xiv
Ta N (e Te [UTox 1T] I EUTT T OUUPPPRTP 1
Standards and Specifications..........cccciirrrriririciiiiiii s 1
Java Platform Enterprise Edition (Java EE)c.ccccccooioininnniiiiiiinccccenes 1
JAVA BATCR.c.iiiiiicicceee ettt ettt b e er e taereesaentents 1
JAVA EE SEIVET ..ueiiiiiietetee ettt ettt st ettt st s 2
Java BatCh OVEIrVIEWcouieuiiieieieete ettt st b e st eb ettt et b eae et nes 2
Job Orchestration and SCheduler ... 3
What is Job Orchestration and Scheduler (JOS)?cccccevuerirenieeecieieieriesesreeeeeeeeesenes 3
JOS COMPONENES i 5
JOS ATCRIEECTUTE. ...ttt ettt sttt st e b ettt et esbe bt ebe et eateneeneas 5

Lol o AN 1o s 1 o TP URPT R 7
JOb Admin CONCEPLS.......cucuimiiiririricieicicice e 7
Job Admin COMPONENLES.........ccovvirieiiiiiiiiiiiireetee e 7
RESTEFUL SEIVICESveevvevieiienieiiiesieetteitesteiestestesreetaestessessessessessesseeseessessessessessessessesssessens 7

JOb AN Ul......coiiiiieiiiicieteeteiet ettt ettt ettt eseeta st essessessesessesseeseessassans 10
Best Practices fOr JODS ..o 10

Job Admin SeCUTItY......curuiieiiiiiic 10

Job Admin CUStOMIZATION .. .ccveeuieiieieieite ettt st ebe et 10

Job Admin TroubleShOOting...........cccceiiiiiiiiic 10
Deployment EITOT ..o 10
Runtime WSMEXCEPHON........cciiiiiiiiiiiiiic e 11
Missing system credentials...........cccooeuoioiiiiiiiiic e 12
Missing system OPtiONS.......cccoiiiiiiiiiiiiii s 12

5 13JOS ProCesS FIOWS ...uoiiiiiiiiiieie ettt 13
Process FIOW CONCEPLSouiiiicicieieiieccie i 13
DSL (Domain Specific LAaNguage)..........cccoevrrumieiiieiniiicicieieeeeccie s 13
Begin ACtiVity ...ocoovoiiiiiiic s 14
ACHVIEY 1ot 14

ENd ACHVIEY oottt s 14
Process VariabIesccoieiiiiiirieietee ettt sttt 14
ProceSss FIOW DSL......ccviiiieieriiciieiieiteteieieieste sttt et este s ese st sseesaessestessessessessesseessessassanes 14
Process FIow DSL characteriStiCS......ceeerveriererieieieieienieseseeeeeeeesesesse e seeessessessenns 14

DISL KEYWOIAS ...ttt 15

Process FIOW APIccooiiieieiiciecieeeteietest ettt ettt et st ta et ess s e s sesnaesaessensenes 16
Process FIOW Variables.........cccvvieieiiieiienieniisieeeieieteteiestesesse e eessessessessessesssessessenns 17
Process FIow INStrumentation.........c.ccuecvevieriiriesieieieieieiesie st eeeeesestessesse st ssesseesseseessens 18
SUD PrOCESSES ...cuvvitietieieeie ettt ettt et e b e et e et esteeste e beesbeesbeesaessaesseesseanseessesssesssesssansaensens 18
ProceSS SCREIMA.ooviiiieiecic ettt ettt e st sbe e aeebeesbeesseessesseenseenseas 18
PrOCESS RESTATT....ccutieiiieeiiiieeieeeie ettt ettt et et e e sre et eesaae s bt e e seeessbe e saeesssessaessssessnennes 18
SEATUSES .. vieeieeete ettt ettt ettt e et e st e et e e s tbe e bt e e sae e bbe e sae e bt e e tae e bbe e tteebeeensaeesaeesaeenns 19
Steps for implementing a JOS FIOW ... 19
ActiVity FEAtUTEScooviiiiiii s 19
SKIP ACHVIEY w.vviiiiic et 19
REST endpoint to set the skip activity flag.........cccccoeoeioinnnniiiiiiirrreees 20
Hold /Release ACIVILYcoueueueuiuiiiiiiiirirrrreieecccee e 20
REST endpoint to set the hold activity flag..........cccccoeiirinniiiiiiiiinniees 20
CalIDACK SEIVICE ..e.vevieeieiierieieniesieeteettettestetessestesreeteestessessessessessesseeseessessassessessessesssassessassenes 20
How to start Process Flow with input parameters............cccocoeceeiiiininnnnnnnnes 20
Call back from ProCeSSILOWccveeveiuiiiiieieeiece ettt 21
How to invoke the Callback Service declaratively..........ccccooooiiiiii 21
Process SECUTILYcuoveiiiiiiiiiiii 27
TroubleShOOtNEoueeiiiii 28
Process FIOW DIidn t STATt......c.cccviciiiieiieieeieeieee ettt e 28
Deleted Process Flow Still Listed in the Ulccccooviiieiiiiiiiciicieceeeeee e 28
Best Practices for Process FIOW DSL.......cooviviiieieieieieieie ettt eseessens 28
SRS To] g 1= LT = SRR TSPR 31
SChEAUIET OVEIVIEW ...cuvieiiieeiiiiieciiecteeteete et ettt teeaeebe s aesreesbeesaeesbeessesssesssasseenseensens 31
JOS Scheduler FEAtUTEScccueviiiiiriiiieieeieeee ettt sttt 31
Scheduler CONCEPLSc.cuouiiiiicicici s 31
Schedule Definitionccieeiieiieiicieceee ettt e ebeebeesaeerneees 31
Schedule EXECULION.......ccoiiiiiiieiicieeeectecte ettt ettt beebeeabeesneesaeees 31
Schedule TYPeS.......cviiiiiiiiiiiicc 31
INtErval SCREAUIES........ccccveieiiiiciieeeteteet ettt ettt e s e besreesaeseensenes 32
Calendar SChEAUIESc.ooveviiiiiieieieeeee ettt saeeea e ssenes 32
Scheduling MeChaniSImMSc.ccucuiuiiinininiririeieieeccccce e 32
SImple SChedULINGccooviiiiiiic e 32
Advanced SChedUlINGcccociiiiiinccc e 32
Schedule FreqUENCYcccoiiiiiiiiiiiiiiiiirrree e 33
SChEAUIE ACHION ..ottt ettt b e et e st e e beesbeenbeennesrneees 34
Schedule Action TYPecovviiiiiiiiiiiiiiii e 35
SChEAUIE STATUSvievvicieiieeeeeeee ettt et e b e be et e esbeenaeseneees 36
Scheduler RUNIIME.cc.oooviiiiiie ettt ettt te e s esveesteebeesbeessesssassnenseensens 36
Scheduler Startup.........cccceiic s 36

Schedule RUNTIME EXECUTION ...vvviiiiiiiiiieieeeeeeeeee ettt e 37

Schedule Execution - ASYNc ACHON. ..o 37

Schedule Execution - SYyNc ACONccovviviririciciiiiiiiineeceeeeecc e 38
Schedule Execution Failover ... 38
Schedule NoOtificationccoevviiiiiiiiii s 38
Scheduler Infrastructure Schema..........c.cococvviiiiiiii, 39
Best Practices for Scheduler ... 39
Scheduler COnSOle...........oiiiiiiiiiiiii 39
Schedule SUMMATYooiiiiiiiicc s 40
Schedules and EXeCUtiONS..........ccociiiiiiiiiiiiiiiiiiiica 40
Schedule Executions Failed Todaycccooiiiieiiiiiiiiiiice 40
Schedule Executions Completed / Triggered Today........cccoceeueuemericcininnnnnennes 41
Schedule Executions In Progress Todaycccccciiiininnnnneiceecciinreeeeenes 41
Schedules Past DUE ..o 41
Manage SChedUles ... 41
Creating a Schedule..........ooiiiiiiiiicc e 42
Schedule FreqUENCYcccoviiiiiiiiiiiiiiiirrreeeccee e 43
Schedule NoOtificationccooeiiiiiiiiiiiiiiii e 44
Scheduler Security Considerations............cccoeeoieiiiiciiieeiccce 49
Scheduler SECUTILY ... 49
Scheduler Operational Considerations.............ccccooiiiieiiiiiiicee e 50
Users Roles for Monitoring and Administration...........ccccceeeioieciiieeiccee 50
Monitoring Schedules ..o 50
Scheduler Log FIles.......ooiiiiiiiirreeecccce e 51
Maintaining Historical Schedule EXeCUtiONSc.cccovvivieviiiiiciiciiiiiinrreenes 51
Scheduler CUStOMIZAtIONccvuiiiiiiii e 51
Customizing Seed Data Schedulescocovueiiiiiiiiniicecccccrreeees 52
Customizing Schedule ACHONS ... 53
Scheduler TroubleShOOtNG.........c.cveueiiiiiiiiiircccc e 54
Scheduler KNOWI ISSUES ..o 54
T USE CASES ..ottt e 55
How do I create a batch job in Job Admin?..........cccccccceiiiininnnniieeccccneeeeeenes 55
Sample JOb XML.......ciiiiiiiiccciiir e 55
How do I pass job parameters to a shell script invoked by job?c.ccccccevivnnnnnnies 55
How do I pass system options to a shell script invoked by job?c.ccccccooivnnnnnies 56
How do I pass system properties to a shell script invoked by job?cccccvvnnnnes 56
How do I chain multiple jobs in a single flow?...........ccccociiininiiiciiiirrees 57
Sample Process FIOWc.cooiiiiiiiiiic s 57
How do I create split fIOWS?cuouiiiiiii 58
Sample SPLit FLOWoooiimiiiiic s 58
How do I create split and join floWS?..........ccoooiiiiiiiiic 60
Sample Split and Join FLOW.........c.ccooiiiiiiiic e 60
Def Process FIOW ..ot 61

vii

XYZ Process FLOW ..ot 61

How do I create a join flow with other flows?ccccciiiinnniiccccccrrree 62
Sample JOIN FIOW ..ot 62

How do I share data between process flOWSs?cccccciiiinnnnnicccccccrreeenes 63
Sample Flow that shares information with other flowscccccceoeiiiiiinn, 63

How do I create a schedule in Scheduler? ... 64
Sample seed data to create schedule.............cccccoeiiiiiiiiiiii 64
RS- T U |] 4 TP PUPT RO UPPPPPRTR 65
RESTHUL SEIVICES «..ovuviviniieiiniieiiieteieistettee ettt ettt sae et sae e ne e se e snene 65
Sample seed data created during installation ... 65

9 Pre-Implementation CoNSIiderationScccvvvieiieeii i e 67
Thread Pool Size in WebLOGICccccoiiiiiiiiiiiiiiiiiccan 67
Database Connection Pool Size in WebLOGIC..........cccovuiiiiiniiiiiiiiiiiiiciis 67

10 High Availability CONSIderationS........ocuuuiiieiiiiiiiiiie e 69
High Availability.......cccoooiiiiiiiiccccicirr e 69
WebLogic Server Cluster CONCEPLScueueveuiuiuiuiiiiererieieereieeecteeres e e 69
SCaliNG JOS ..ot 69
JOS ON CIUSEET ..ottt sttt ettt et bbbt e bt et et e besbesbe e st eaeeneenean 70
LOGEING oottt 70

Update Log Level........ccoiiiiiiiiiiiicena 70
Create/Update/Delete System Options..........ccccceuiiiiiinininiiiiiiiciciiiines 71
Create/Update/Delete System Credentials............cccooooeviiiiiiiiiiiiiiiiiiiinn, 71
Scheduler Configuration Changes for CIUster.............cccvvvviiicceiiinnnreeenes 71

11 Deployment ArChIitECIUTE ... e e e e e 73
JOS and BDI deployment architecture for RMS.............cccooooiii 73
JOS Deployment Architecture..........ooooiiiiioiiiiiic e 73
JOS Scalable Deployment Architecture............coooiriiioiiiiiiiiiic e 74

12 Performance Considerations..........cocouiiiiiiiiiiiiii e 75
CPU and Memory considerations..........c.coccoueerrirerurueieiciiiiiiiniieeseeeeneneneneneeeeseseseseenenes 75

A Appendix A: Scheduler REST ENdpPointS......ccccvviiiiie i 77
B Appendix B: Process Flow REST ENAPOiNtScc.uuiiiiiiiiiiiiiiiieeeee e 78
C Appendix C: Job Admin REST ENAPOINESccuviiieiiiiiiiiiiiiee e e ssineee e 81
D Appendix D: System Setting SEerviCe........ i 83
Managing System Options Using curl..........ccocoooiiiiiiii 83
Create System OPLioN........ccciiviiiiiiiiiic s 84
Update System OPtionccccciverriririririeiciiiciireeeeeeeeeeetes e eeeeeees 84

Delete System Option.........cccccviiiiiiiiiiiiiii s 84

Reset System Options Cachecccccoiiviirirriniiiciiiiiiicereeeeee e 84

List System Options.........cceuiiviiiiiiiiiiic s 84
Managing Credentials Using Curl.........ccccccooioirinniiiiiiiiineececceccceeeseeeeeeenes 84
Create Credentialcocoeirciiiniiiceeee et 84

viii

Update Credential.........c.cccociiiiiciceeee s 84

Delete Credential ... 85

List Credentials ... 85

E Appendix E: Scheduler Ul SCreenshotsiiiiiiiiciiiiiiii e 87
Schedule SUMMATYcooiiiiic s 87
Manage Schedules - Schedule EXecUtionscccocruiieiiiiiiciccccc 87
Manage Schedules - Create Schedule............ccooviiiiiiiiiiccecccccree 88
Schedule EXECULIONSc.ciiiiiiiiiiiciciccciciirr et 88
SYSEEM LOGS ... 89

F Appendix F: Process Flow Ul Screenshots ... 91
Process FLOW LIVe......c.cciiiiiiiiiciciccc e 91
Manage Process Flow - Process Flow Executions.............cccooooiiiiiiiiiiiiiiiiic 91
Manage Process Flow - Process Flow Configurationscccccooeeeiiiiiiiiiciiiiine, 92
Manage Process Flow - Launch Process FIOW ..o 92
Manage Process Flow - Process Flow Details - Process Details...........cccccceoeininrnnnnnes 93
Manage Process Flow - Process Flow Details - Process DSL...........cccccccceiiinnnnnnnnes 93
Historical Process FLow EXECULIONSc.cccioiiiiriririiiciciiiiiicceeeccecececeese e 94
Manage COonfigurations...........ccoeeeueucuiiiiiinrrrreeeeeeee e 94
SYSEEM LOGS ...t 95

G Appendix G: Job Admin Ul SCreenshotscccceeiiiiciiiiiiee e 97
Batch SUMMATY ... 97
Manage Batch Jobs - Job EXeCUIONS ..o 97
Manage Batch Jobs - Job Latunch........cccccocoiiiiiinnniiiiiiiiieeceececce e 98
Manage Batch Jobs - Job Definition - Job Details..........ccccccooiieniniciiiiiiinnnnrees 98
Manage Batch Jobs - Job Definition - Job XML Contentcccceeeuceciiiinnnnnnnnes 99
Manage COonfigurations...........ccoeeueueueuiiiiiinirrreeeeeeece e 99
SYSEEIM LOGS ... 100

Send Us Your Comments

Oracle Retail Job Orchestration and Scheduler (JOS), Implementation Guide, Release
16.0.21

Oracle welcomes customers' comments and suggestions on the quality and usefulness of
this document.

Your feedback is important, and helps us to best meet your needs as a user of our
products. For example:

= Are the implementation steps correct and complete?

= Did you understand the context of the procedures?

= Did you find any errors in the information?

= Does the structure of the information help you with your tasks?

* Do you need different information or graphics? If so, where, and in what format?
= Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell us
your name, the name of the company who has licensed our products, the title and part
number of the documentation and the chapter, section, and page number (if available).

Note: Before sending us your comments, you might like to
check that you have the latest version of the document and if
any concerns are already addressed. To do this, access the
Online Documentation available on the Oracle Technology
Network Web site. It contains the most current
Documentation Library plus all documents revised or
released recently.

Send your comments to us using the electronic mail address: retail-doc_us@oracle.com
Please give your name, address, electronic mail address, and telephone number
(optional).

If you need assistance with Oracle software, then please contact your support
representative or Oracle Support Services.

If you require training or instruction in using Oracle software, then please contact your
Oracle local office and inquire about our Oracle University offerings. A list of Oracle
offices is available on our Web site at www.oracle.com.

Send Us Your Comments Xi

http://www.oracle.com/

Preface

and Scheduler jOs)Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through
My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents

For more information, see the following documents in the Oracle Retail Job Orchestration
and Scheduler (JOS) Release 15.0 documentation set:

Oracle Retail Integration Cloud Service Administration Guide

Oracle Retail Integration Cloud Service Administrator Action List

Customer Support

To contact Oracle Customer Support, access My Oracle Support at the following URL:
https:/ /support.oracle.com

When contacting Customer Support, please provide the following:

= Product version and program/module name

= Functional and technical description of the problem (include business impact)

= Detailed step-by-step instructions to re-create

= Exact error message received

= Screen shots of each step you take

Improved Process for Oracle Retail Documentation Corrections

To more quickly address critical corrections to Oracle Retail documentation content,
Oracle Retail documentation may be republished whenever a critical correction is
needed. For critical corrections, the republication of an Oracle Retail document may at
times not be attached to a numbered software release; instead, the Oracle Retail
document will simply be replaced on the Oracle Technology Network Web site, or, in the
case of Data Models, to the applicable My Oracle Support Documentation container
where they reside.

An updated version of the applicable Oracle Retail document is indicated by Oracle part
number, as well as print date (month and year). An updated version uses the same part
number, with a higher-numbered suffix. For example, part number E123456-02 is an
updated version of a document with part number E123456-01.

If a more recent version of a document is available, that version supersedes all previous
versions.

Preface xiii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://support.oracle.com/

Oracle Retail Documentation on the Oracle Technology Network

Oracle Retail product documentation is available on the following web site:
http://www._oracle.com/technetwork/documentation/oracle-retail-100266._html

xiv Job Orchestration and Scheduler Implementation Guide

1

Introduction

Job Orchestration and Scheduler (JOS) is a product suite for managing, executing,
orchestrating and scheduling batch jobs for an enterprise.

Standards and Specifications

JOS is designed and built on industry standard nonproprietary Java EE 7 and Java Batch
(JSR 352).

Java Platform Enterprise Edition (Java EE)

Java Batch

Java Platform Enterprise Edition (Java EE) is an umbrella standard for Java's enterprise
computing facilities. It bundles together technologies for a complete enterprise-class
server-side development and deployment platform in java.

Java EE specification includes several other API specifications, such as JDBC, RMI,
Transaction, JMS, Web Services, XML, Persistence, mail, and others and defines how to
coordinate among them. Java EE specification also features some specifications unique to
enterprise computing. These include Enterprise JavaBeans (E]JB), servlets, portlets, Java
Server Pages (JSP), Java Server Faces (JSF) and several Web service technologies.

A Java EE application server manages transactions, security, scalability, concurrency,
pooling, and management of the EJB/Web components that are deployed to it. This frees
the developers to concentrate more on the business logic/problem of the components
rather than spending time building scalable, robust infrastructure on which to run on.

JSR 352 is a Java specification for building, deploying, and running batch applications.
Batch is an industry metaphor for background bulk processing. Myriad business
processes depend on batch processing and demand powerful standards-based facilities
for enabling this essential workload type.

JSR 352 addresses three critical concerns: a batch programming model, a job specification
language, and a batch runtime. This constitutes a separation of concerns.

1. Application developers have clear, reusable interfaces for constructing batch style
applications;

2. Job writers have a powerful expression language for how to execute the steps of a
batch execution;

3. Solution integrators have a runtime API for initiating and controlling batch
execution.

JSR 352 defines a Job Specification Language (JSL) to define batch jobs, a set of interfaces
that describes the artifacts that comprise the batch programming model to implement
batch business logic, and a batch runtime for running batch jobs, according to a defined
life cycle.

The batch runtime is a part of the Java EE 7 runtime and has full access to all other
features of the platform, including transaction management, persistence, messaging, and
more

Introduction 1

Java Batch Overview

Java EE Server

WebLogic Server implements the Java EE specification and is the Java EE server vendor
for JOS in this release. WebLogic server provides many additional services beyond the
standard services required by the Java EE specification.

See the WebLogic® Application Server documentation for more information:
http:/ /docs.oracle.com/middleware/12211/wls/index.html

http:/ /www.oracle.com/technetwork /middleware/fusion-
middleware/documentation/index.html

Java Batch Overview

Batch processing for Java platform was introduced in Java EE 7. It provides
programming model for batch applications and a runtime to run and manage batch jobs.
Batch processing is typically bulk oriented, non-interactive, and long running,.

Item Reader

[tem Processor

Item Writer

A job encapsulates the batch process. A job contains one or more steps. A job is put
together using Job Specification language (JSL) that specifies the sequence in which steps
must be executed.

= A step contains all the necessary logic and data to perform the actual processing. A
chunk-style step contains ItemReader, ItemProcessor, and ItemWriter.

= Job Operator provides an interface to manage all aspects of job processing.

= Job Repository holds information about jobs currently running and jobs that ran in
the past.

2 Job Orchestration and Scheduler Implementation Guide

http://docs.oracle.com/middleware/12211/wls/index.html
http://www.oracle.com/technetwork/middleware/fusion-middleware/documentation/index.html
http://www.oracle.com/technetwork/middleware/fusion-middleware/documentation/index.html

2

Job Orchestration and Scheduler
What is Job Orchestration and Scheduler (JOS)?

Job Orchestrator and Scheduler (JOS) is a generic tool to schedule tasks, manage and
orchestrate dependencies between tasks, and run non interactive long running jobs.

Job Orchestration and Scheduler 3

3
JOS Components

* Scheduler - A generic GUI tool used to define and manage time based scheduling
work.

= Process Flow — Defines workflow by connecting and orchestrating multiple
executable tasks. Provides an engine to execute the workflows.

= Job Admin — A robust task execution engine based on standard JavaBatch (JSR352)
technology. Provides a GUI to manage and monitor jobs.

JOS Architecture

Jo! hestration hedulin 0S) Archite

JOS Components 5

4

Job Admin
Job Admin Concepts

Application that provides management and monitoring of batch jobs.
= Built on JavaEE JSR352 JavaBatch standard, available in WebLogic.
= GUI to manage/start/restart batch jobs.
= JavaBatch Runtime Engine to execute job.xml files.
= Services available to start/restart/monitor jobs programmatically.

* Monitor executions and logs.
Job Admin Components

RESTFul Services

Batch Service

Batch service is a RESTful service that provides various endpoints to manage batch jobs.
Here are key end points in Batch Service.

Start Job

This end point starts a job asynchronously based on a job name and returns the execution
id of the job in the response.

Path: /batch/jobs/<jobName>
HTTP Method: POST

Inputs

Job Name as path parameter

Job Parameters as a query parameter. Job Parameters is a comma separated list of name
value pairs. This parameter is optional.
Sample Request

http://l1ocalhost:7001/jos-batch-job-
admin/resources/batch/ jobs/Shel ICommandRunnerJob?jobParameters=key=value

Successful Response
XML

<executionldVo targetNamespace=""">
<executionld>1</executionld>

<jobName>Shel 1CommandRunnerJob</ jobName>
</executionldvo>

JSON

“executionld”’: 1,
“jobName”: ““Shel ICommandRunnerJob’
}

Error Response
XML
<exceptionVo targetNamespace=""">

Job Admin 7

Job Admin Components

<statusCode>404</statusCode>

<status>NOT_FOUND</status>

<message>HTTP 404 Not Found</message>

<stackTrace></stackTrace> <!-- optional -->
</exceptionVo>

JSON

{
“statusCode™: “404”,

“status”: “NOT_FOUND,
“message”: “HTTP 404 Not Found”,
“stackTrace”: “”’

}
Restart Job

This end point restarts a job asynchronously using job execution id and returns the new
job execution id.

Path: /batch/jobs/executions/{executionld}
HTTP Method: POST
Inputs: executionld as path parameter

Sample Request
http://1ocalhost: 7001/ jos-batch-job-admin/resources/batch/jobs/executions/2

Successful Response

XML

<executionldVo targetNamespace=""">
<executionld>2</executionld>
<jobName>She I ICommandRunnerJob</jobName>
</executionldvo>

JSON
{
“executionld”: 2,
“jobName™: ““Shel ICommandRunnerJob’

}

Error Response
XML

<exceptionVo targetNamespace="""">
<statusCode>500</statusCode>
<status>INTERNAL_SERVER ERROR</status>

<message>Internal Server Error</message>
<stackTrace></stackTrace> <!-- optional -->
</exceptionVo>

JSON

{
“statusCode”: “500”,

“Status”: “INTERNAL SERVER ERROR™,
“Message™: “Internal Server Error”,
“stackTrace”: “”’

}
Check Status of a Job

This endpoint returns the status of a job using job name and execution id.

Path: /batch/jobs/{jobName}/<jobExecutionld>
HTTP Method: GET

8 Job Orchestration and Scheduler Implementation Guide

Job Admin Components

Inputs
jobName as path parameter
jobExecutionld as path parameter

Sample Request

http://l1ocalhost:7001/jos-batch-job-
admin/resources/batch/jobs/Shel ICommandRunnerJob/1

Successful Response
XML

<joblnstanceExecutionsVo targetNamespace=""">

<jobName>Shel 1CommandRunnerJob</ jobName>
<joblnstanceld>1</joblnstanceld>
<resource>http://localhost:7001/jos-batch-job-
admin/resources/batch/jobs/Shel ICommandRunnerJob/1</resource>
<joblInstanceExecutionVo>

<executionld>1<>executionld>
<executionStatus>COMPLETED</executionStatus>
<executionStartTime>2016-07-11 15:45:27._356</executionStartTime>
<executionDuration>10</executionDuration>
</joblnstanceExecutionVo>
</joblnstanceExecutionsVo>

JSON
{

“jobName™: ““Shel IComandRunnerJob™,
“joblInstanceld”: 1,
“resource”: “http://localhost:7001/jos-batch-job-
admin/resources/batch/ jobs/Shel ICommandRunnerJob/1”,
[““JoblnstanceExecutionVo™: {
“executionld”: 1,
“‘executionStatus’: “COMPLETED”,
“executionStartTime”:°2016-07-11 15:45:27.356"",
“executionDuration”: “10”
H |
¥
b

Error Response

XML

<exceptionVo targetNamespace=""">
<statusCode>503</statusCode>
<status>SERVICE_UNAVAILABLE</status>
<message>Service Unavailable</message>
<stackTrace></stackTrace> <!-- optional -->
</exceptionVo>

JSON

{
“statusCode”: “503”,

“Status”: “SERVICE_UNAVAILABLE™,
“Message™: “Service Unavailable”,
“stackTrace”: “’

}

System Setting Service
See Appendix D for details about System Setting Service.

Job Admin 9

Job Admin Components

Job Admin Ul

Job Admin UI provides functionality to manage and monitor jobs. The screenshots for
Job Admin UI can be found in Appendix G.

Best Practices for jobs
= Use Batchlet if job needs to run a script or program that resides locally.

= Use ItemReader, ItemWriter and so on, if job needs more control over the processing
of data. Chunk processing allows data to be processed in chunks and if job fails, it
can only process the remaining chunks during restart.

= Use job parameters to dynamically pass parameters to a job.

= Use PartitionMapper to specify number of partitions and threads for chunk
processing so that data is processed concurrently.

Job Admin Security
Both Job Admin Ul and REST Services are secured with SSL and basic authentication.
The below mentioned roles are defined to restrict access to operations in Job Admin.
= JobAdminRole
= JobOperatorRole
= JobMonitorRole

Batch jobs can be run from Job Admin UI or through Batch REST service. Here are the
operations that can be performed by the users based on their role

Function Admin Role Operator Role Monitor Role
Edit configuration Yes No No

from UI

Create/update/delete | Yes No No

system options

Create/update/delete | Yes No No

system credentials

View credentials Yes No No

Run Jobs Yes Yes No

Monitor jobs Yes Yes Yes

Job Admin Customization

During the deployment of Job Admin, seed data gets loaded to various tables. Seed data
files are located in jos-<app>-home/setup-data/dml folder. If seed data is changed, Job
Admin need to be reinstalled and redeployed. For loading seed data again during the
redeployment, LOADSEEDDATA flag in BDI_SYSTEM_OPTIONS table need to be set to
TRUE.

Job Admin Troubleshooting

This section describes the Job Admin errors and its troubleshooting.

Deployment Error

Issue: Job Admin deployment can run into this error if database credentials are invalid:

10 Job Orchestration and Scheduler Implementation Guide

Job Admin Components

Caught: javax.management.RuntimeMBeanException: java.lang.RuntimeException:
weblogic.management . provider EditFailedException: java.lang-NullPointerException

Javax.management.RuntimeMBeanException: java.lang.RuntimeException:
weblogic.management. provider .EditFailedException: java.lang.NullPointerException

at weblogic.utils.StackTraceDisabled.unknownMethod()
Caused by: java.lang.RuntimeException:
weblogic.management.provider .EditFailedException: java.lang.NullPointerException

1 more

Caused by: weblogic.management.provider _EditFailedException:
Java. lang.NullPointerException

1 more
Caused by: java.lang.NullPointerException

1 more
Solution:

Undo all changes in the Weblogic domain session. Redeploy app with setting up new
credentials and verify deployment is successful.

Runtime WSMException
Issue: Log files contain this exception:

oracle.wsm.common.sdk. WSMException: WSM-07620 : Agent cannot enforce policies
due to either failure in retrieving policies or error in validations, detail= "WSM-02557 The
documents required to configure the Oracle Web Services Manager runtime have not
been retrieved from the Policy Manager application (wsm-pm), possibly because the
application is not running or has not been deployed in the environment. The query
"&(@appliesTo~="REST-CLIENT()")(policysets:global:%)" is queued for later retrieval.
Solution: Follow BDI Installation guide, and verify WSM- policy manager is configured
for admin server URL.

Open weblogic domain console and Target wsm-pm app to Admin Server. Bounce
Admin server and verify wsm-pm app is in Active State.

Job Fails and Job Admin Log Files Contain No Details of the Failure

Issue: A job fails and the Job Admin log files contain no evidence of or details about the
failure.

Solution: Take a look at the WebLogic Server log files to identify the root cause of the job
failure. One example of this is improper data source configuration.

Job admin UI throwing error: Job XML not found
Issue: Log files contain this exception:

Caused By: javax.ejb.E]JBException: EJB Exception: : java.lang.RuntimeException: Could
not find jobName(ShellCommandRunnerBatchlet) xml file. You may have renamed the
job file or your job repository has more jobs than your application. To resolve the issue
either delete the job repository or add the correct job xml file to the app.

Solution: The job has been deleted from the jos-job-home before redeployment. Either
add the missing Job xml or Delete the execution records of the Job from batch database.

Job admin Ul throwing error: Table or view doesn't exists
Issue: Log files contain this exception:

<Error> <javax.enterprise.resource.webcontainer.jsf.application> <BEA-000000> <Error
Rendering View|[/index.xhtml] javax.el. ELException: /index.xhtml @15,84

Job Admin 11

Job Admin Components

value="#{batchSummaryRequestBean.refreshPage}": javax.ejb.EJBException: E]B
Exception: : com.ibm.jbatch.container.exception.PersistenceException:
java.sql.SQLSyntaxErrorException: ORA-00942: table or view does not exist

Solution: BatchInfrastructure database is not pointing to a valid schema, Check if the
schema has the following tables: CHECKPOINTDATA,
STEPEXECUTIONINSTANCEDATA, STEPSTATUS, EXECUTIONINSTANCEDATA,
JOBINSTANCEDATA, JOBSTATUS. If not then run the DDL

$0racle_Home/oracle_common/common/sqgl/wlsservices/batch/oracle/jbatch.sqgl

10 exception or permissions issue on running a shell runner job

Issue: java.io.IOException: Cannot run program "./TestShelll.sh" (in directory
"/u00/webadmin/16.1.0/Scripts"): error=13, Permission denied

Solution: Check if the script the job is running is present in the specified location or not.

Check If the required permissions are provided for running the script.

Missing Credentials Access permission

Issue: Caused by: java.lang.RuntimeException: Cannot get the Credential Map with the
specified appLevelKeyPartitionName(DEFAULT_KEY_PARTITION_NAME).at
com.oracle.retail. integration.common.security.credential. CredentialStoreManager.getAll
UserNameAliases(CredentialStoreManager.java:1171) ~[retail-public-security-api-
16.1.0.jar:?]Caused by: java.security.AccessControlException: access denied
("oracle.security.jps.service.credstore.Credential AccessPermission”
"context=SYSTEM,mapName=DEFAULT_KEY_PARTITION_NAME keyName=*"
"read")

Solution: Verify weblogic.policy file, credential access permissions should be added for
the domain where the apps are deployed. Add the permissions and restart the Admin
and managed server.

Missing system credentials
Issue:

Caused by: java.lang.Illegal ArgumentException:
alias(processCallBackServiceUrlUserAlias) not found in the credential store.

Solution:
Add System Credentials using Ul or REST service.

Missing system options
Issue: 2017-03-31T02:49:42,628 [Thread-132] DEBUG Logger$debug - Starting job:
null/resources/batch/jobs/DiffGrp_Fnd_ExtractorJob 2017-03-31T02:49:42,658 [Thread-
132] ERROR Logger$error$0 - Error calling activity. java.lang.NullPointerException:
Cannot invoke method getBytes() on null object

Solution: Add System Options using Ul or ReST service.

12 Job Orchestration and Scheduler Implementation Guide

5
JOS Process Flows

A process flow is a composition of one or more activities. It is written in a DSL script that
contains all the activities that makes up a process from start to finish.

A process flow encapsulates a sequence of activities. An activity can be synchronous or
asynchronous. In JOS some of these activities may be invocations of batch jobs.

Process Flow

\45 Save BEFORE context

Activity 1
z/
Variables },/ ,‘4b- Save AFTER context
o —~ - T
e .
o :
e ™ .
External Variah| .
_ e ¥
-— . ™
‘\\ | ———— = Save BEFORE context
~
~
Activity N

j4b Save AFTER context

Process Flow Concepts

DSL (Domain Specific Language)

Process flow definition is specified in a Domain Specific Language (DSL) built on the top
of Groovy. Since Groovy is build on the top of Java Virtual Machine (JVM) Groovy can
understand Java and Groovy language constructs. Hence the process flow DSL can
understand the DSL, Groovy and Java language constructs.

JOS Process Flows 13

Process Flow DSL

A process is a list of activities. “begin”, “end” and “activity” are the main DSL keywords
used in process flow definition. These are described in detail below.

Begin Activity
“Begin” activity in the process flow definition appears as the first activity. There should
be only one “begin” activity. This activity is intended to be the one used for any
initialization needed for the process flow.

Activity
Activity has two parts. Name and Action. Name attribute is mandatory and should be
used to give a unique name for the activity.

Action section is where the executable code should reside. Any Groovy or Java code can
be coded in this section.

There can be one or more Activities in a process.

End Activity

“End” activity in process flow definition appears as the last activity. There should be
only one “end”activity. This activity is intended to be the one used for any finalization
needed for the process flow.

Process Variables

Variables used between activities can be created and stored in the processVariables map.
The process engine also uses some of the variables for its own working in the process
variable map. These variables are prefixed with “bdi_internal_”. These variables must
not be modified inside DSL code.

Here is how you can use the process variable map for your own use.

// Set Variable

processVariables[“VariableName’] = “‘Some Value”

// Use a variable value

def anotherVariable = processVariables[*“VariableName™]

External Variables

Some of the system level configuration values are available in the externalVariables map.
These values are read-only. The process flow DSL can use these values, but should not
attempt to change it.

For Example;

externalVariables["'rxmJobAdminBaseUrlUserAlias']

Process Flow DSL

Process Flow DSL characteristics

= Every process flow must have a name. The process flow name must match with the
filename that the process flow is saved into.

= Process flows are written in a DSL and saved as .flo files.

= Process flow is made up of two special activities called “begin” and “end” and bunch
of user defined activity nodes.

= “begin” and “end” activity will always run.

14 Job Orchestration and Scheduler Implementation Guide

Process Flow DSL

— User defined activity may or may not run based on “SKIP” or moveTo logic.

— Every user defined activity must have

a unique name within a process flow.

— The activity names are used to transfer control from one activity to another.
Jumping to an activity is possible using moveTo function.

— Every activity has an “action” block that does the real work. Small amount of
Groovy/Java code can be put inside the action block.

— Local variables can be defined within the action block.

— Process variables are defined on top and are accessible to all activities within the

process.

— There are few implicit variables, like $activityName, $name.

— Errors can be thrown using “error <some message>" function.

— Built-in Conditional branching, looping, error handling.

— Predefined functions for common tasks to reduce boilerplate code.

— Built in REST service DSL to be able to call service with just one line.

— Services available to start/restart/monitor process flows programmatically.

— Can handle chaining of Process Flows.

— Service Credential management framework built in

— Hybrid Cloud ready
— Built in activity SKIP functionality

— Built in activity HOLD and RELEASE functionality
— Built in SPLIT and JOIN functionality between process flows

0 SPLIT - one to many
0 JOIN - many to one

DSL Keywords

DSL Keywords

Description

process Identifies the process flow. Only one keyword in
a process flow.

name Used for naming processes and activities

var Used for initializing process variables

begin Begin activity block is the first activity in the
DSL. It is mandatory and can be used for
initialization.

activity The executable component of the process flow. A
process flow is composed of many activities.

action Action section is where the executable code

should reside. Any Groovy or Java code can be
coded in this section.

on "okay" moveTo

Use these keywords inside an activity to move to
another activity

on "error" moveTo

Use these keywords inside an activity to move to
error activity

JOS Process Flows 15

Process Flow DSL

Process Flow API

DSL API

USAGE

Description

startOrRestartJob(def baseUrl,
String jobName, String
credentials)

startOrRestartJob(externalVariables["url"
1,"JobAbc",
externalVariables[“urlUserAlias"])

Method to start or restart a job in Job Admin.
This method sends a POST request to a REST
end point in Job Admin

waitForJobCompletedOrFailed(def
targetActivity, def url, String
credentials, int waitMinutes=1)

waitForJobCompletedOrFailed("JobAbcA
ctivity",externalVariables|["url"] +
"/resources/batch/jobs/JobAbc/" +
processVariables|"jobExecutionld"],
externalVariables["urlUserAlias"])

Method to wait for job to be completed or
failed. This method checks the status of the
job and waits until status is COMPLETED or
FAILED.

waitForProcessInstancesToReachS
tatus(def processInstanceList, def
targetStatus=PROCESS_COMPLE
TED, def logical AndOrOr =
LOGICAL_AND, int
waitMinutes=1)

waitForProcessInstancesToReachStatus([
"P~1", "Q~1"], PROCESS_COMPLETED,
LOGICAL_OR)

Method to wait for other process instances to
reach a status.

waitForProcessNamesToReachStat
us(Map,
processNameToNumberOfExecuti
onsAfterStartMarkerTime,
LocalDateTime startMarkerTime,
def targetStatus =
PROCESS_COMPLETED, def
logical AndOrOr =
LOGICAL_AND, def
whichExecutionStatus =
LAST_EXECUTION_STATUS, int
waitMinutes = 1)

waitForProcessNamesToReachStatus([P:
3, Q:3, R:3], now().minusDays(1),
PROCESS_COMPLETED,
LOGICAL_AND,
LAST_EXECUTION_STATUS)

Method to wait for processes with names to
reach a status.

persistGlobalUserData(String key,
String value)

non

persistGlobalUserData("key", "value")

Method to persist data to be shared with
other processes. Persists key value pairs in
BDI_SYSTEM_OPTIONS table.

String findGlobalUserData(String
key)

findGlobalUserData("key")

Gets value from BDI_SYSTEM_OPTIONS
table for given key.

Map
find AllGlobalUserData(String
key)

find AllGlobalUserData()

Returns a Map with all user data.

removeGlobalUserData(String
key)

removeGlobalUserData("key")

Removes data for given key.

Variables.urlUserAlias

error error “report my error” Generate an error condition and jump to the
end activity. Process will be marked as
failed.
POST POST[externalVariables.url]"externalVar | Method to make a POST call to a url.
iables.urlUserAlias
GET GET[externalVariables.url]*externalVari | Method to make a GET call to a url.
ables.urlUserAlias
DELETE DELETE[externalVariables.url]*external | Method to make a DELETE call to a url.

16 Job Orchestration and Scheduler Implementation Guide

Process Flow DSL

DSL API USAGE Description
log.info log.debug “Activity Name: Adds information to log file
log.debug $activityName”

Process Flow Variables

“myVar2”:"xyz”,
llmyvar3ll:ll OII])

//getvalue

def aVar =
processVariables[' myVarl’]

//put new value

processVariables[' myVar2'] =
IlabCI/

Variables Implicit or Explicit Usage Examples Description
externalVariables Implicit variables def myVar = These are Global variables that
externalVariables['myKey’] apply to all process flows. It comes
from System Options table.
Installation specific key values will
be here.
processVariables Implicit variables var([“myVarl”:"prq”, These are process level variables

that can be shared by all activities.
Process variables are automatically
persisted. Restart of a process
recovers the process variables to the
right value where it left off in the
previous run. These are the most
common variables you should use.
Process variables must be declared
using the var key word.

Local variables

Explicit variables

action{

def a = “xyz”
defi=7

i++

}

Any variables can be created with
the action block and used as local
variables. Local variables defined in
one activity is not accessible in
another activity.

Global external

Explicit variables

persistGlobalUserData(“key1”,

For inter process dynamic variable

${processName}”

variables “valuel”) sharing one can persist new
variable to DB.
def xyz =
findGlobalUserData(“key1”)
removeGlobalUserData(“key1”)
activityName Implicit variables println “My activity is Current activity name.
${activityName}”
name Implicit variables Println “My process name is Current process name.

JOS Process Flows 17

Process Flow Instrumentation

Process Flow Instrumentation

When the process engine executes the process flow, the before and after snapshots of the
Activity is recorded in the process schema.

The information is reported through Process Flow Admin application. Process Flow
Admin is a Web application that provides GUI to manage workflows of tasks. This is
useful for tracking the process flows as well as troubleshooting. The snapshots also help
in case of restarting a failed process. From the schema, the process engine can recreate the
context to execute a restart and can resume execution from the activity that failed in the
previous run.

Sub Processes

One process may invoke one or more processes asynchronously. All the processes may
run at the same time.

In order to identify these subprocesses they are named accordingly. Once invoked, the
main process has no control over the sub processes. Each of the process will run in the

same way as they are invoked independently.

Process Schema

The process instrumentation captures the state of the process at the beginning and end of
each activity. This information is persisted into the process schema. For each activity
there will be two records, one for before activity and the other for after activity.

Table Name Description

BDI_PROCESS_DEFINITION This table stores all the process flow definitions. It is loaded at
deployment time.

BDI_PROCESS_EXEC_INSTANCE This table tracks all the process flow executions. There is a row for
each process flow execution.

BDI_ACTIVITY_EXEC_INSTANCE This table tracks all the activity executions. There are 2 rows for each
activity execution. One to store the before context and one to store
after context

BDI_ACTIVITY_DYNAMIC_CONFIG This table stores the user runtime choices like SKIP, HOLD etc at
activity level

BDI_SYSTEM_OPTIONS This table has all the system level information like URLs, credential
aliases and so on.

Process Restart

When the activities within a process flow fails, the process status is marked as failed. A
failed (or stopped) process flow can be restarted. If there are multiple failed processes,
only the latest failed instance can be restarted.

Note: that, restart is for an already run and failed instance.
This is different from running a new instance of the process
flow.

When a process flow is restarted, the system knows the activity that failed (or stopped) in
the previous run. During restart, the process engine will skip all the activities prior to the
failed activity. It will restore the context for the activity and resume execution at the
failed activity.

18 Job Orchestration and Scheduler Implementation Guide

Statuses

Process flow execution does not keep the activity history at restart. It will overwrite the
activity records on restart.

Statuses

Each activity instance and the process instance maintain the status of execution in the
process schema. Following are the possible values for Activities and Process.

At the “begin” activity, process is marked as PROCESS_STARTED. If any activity fails,
the process is marked as PROCESS_FAILED. After the “end” action is completed, the
process is marked PROCESS_COMPLETED. A complete list of process flow status are:

= PROCESS_STARTED

= PROCESS_FAILED

= PROCESS_COMPLETED

= PROCESS_STOPPING

= PROCESS_STOPPED

Similar to process statuses, each activity has also a status. There values are :
= ACTIVITY_STARTED

= ACTIVITY_FAILED

= ACTIVITY_COMPLETED

= ACTIVITY_WAITING_DUE_TO_HOLD_STARTED

= ACTIVITY_WAITING_DUE_TO_HOLD_COMPLETED
= ACTIVITY_WAITING_DUE_TO_JOIN_STARTED

= ACTIVITY_WAITING_DUE_TO_JOIN_COMPLETED

= ACTIVITY_SKIPPED

= ACTIVITY_STOPPING

= ACTIVITY_STOPPED

All the runtime status are persisted in the process schema at runtime when the DSL is
executed.

Steps for implementing a JOS Flow

1. Download “JosProcessFlow<version>ForAll16.x.xApps_eng_ga.zip” and unzip the
file.

2. Create a process flow DSL file that stitches the jobs. DSL is groovy based and groovy
or java code can be used with in “action” block. See the sample DSL below.

3. Copy DSL files to “jos-process-home/setup-data/dsl/flows-in-scope” folder.

Run the deployer script in “jos-process-home/bin” folder to deploy JOS Process
flow.

Activity Features

Skip Activity
Activities in a process flow can be skipped by setting the skip activity flag through the
Process Flow Configurations screen or REST endpoint. Skip flag can be set to expire
based on date and time. If expiry date is not provided, then that activity will be skipped
until skip flag is removed. When an activity is set to skip, process flow engine skips that
activity and runs the next activity in the flow.

JOS Process Flows 19

Callback Service

Process Flow Configurations Screen

Process Flow Executions Process Flow Configurations |IENL s Nal] Process Flow Details

Activity Name Action Action Expiry Date and Time Comments Action

begin
Diff_Fnd_ExtractorActivity) skip Activity | Hold Activity processadmin _Sawe |
Diff_Fnd_ExtractorStatusActivity . Skip Activity " Hold Activity ﬂl
Diff_Fnd_GetDataSetldActivity) Skip Activity ") Hold Activity ﬂl
Diff_Fnd_DownloaderAndTransporterActivity . Skip Activity 7 Hold Activity ﬂl
Diff_Fnd_CheckDownloaderAndTransporterStatusActivity \ skip Activity) Hold Activity processadmin ﬂl
Diff Fnd UnloaderActivity | Skin Activity [A Antivity Save |

REST endpoint to set the skip activity flag

/batch/processes/<processName>/activities/<activityName>?skip=true

Hold/Release Activity

Activities in a process flow can be paused by setting the hold activity flag through the
Process Flow Configurations screen or REST endpoint. Hold flag can be set to expire
based on date and time. If expiry date is not provided, then that activity will be paused
until hold flag is removed.When an activity is set to hold, process flow engine waits on
that activity until hold flag is removed or time expired.

REST endpoint to set the hold activity flag

/batch/processes/<processName>/activities/<activityName>?hold=true

Callback Service

Process Flow engine can be configured to call a rest service at each activity. This is useful
if the process flow is invoked by an external system (typically a workflow system) and
the system wants to be informed of the progress of each activity. This callback can be
configured declaratively or programmatically as needed.

The external system will have to implement the CallBack Service that will allow it to
receive information from the JOS process flow. The external system can call the the
process flow passing the context information as process flow parameters. The process
flow will pass the information back when it makes the CallBack Service call.

How to start Process Flow with input parameters

To start a jos process flow user has to make a REST service call to URL

(http://<host>:<port>/bdi-process-
Flow/resources/batch/processes/operator/<processName>) .

The call must be a POST call to the URL.

The process flow start call accepts http query parameters. The format of the query
parameters are as follows:

20 Job Orchestration and Scheduler Implementation Guide

Callback Service

http://localhost:7001/bdi-process-
Flow/resources/batch/processes/<ProcessName>?processParameters=cal lerld=<valuel>,c
orrelationld=<value2>,cal IBackServiceDataDetai I .<namel>=<value3>,cal IBackServiceDa
taDetai I . <name2>=<value4>

Spaces are not allowed in query parameters and must be separated by commas.

For Example;

http://l1ocalhost:7001/bdi-process-

Flow/resources/batch/processes/Abc_Process?processParameters=cal ler1d=123,correlat

ionld=abc, cal IBackServiceDataDetai l .def=xyz,cal IBackServiceDataDetail .abc=123

The following are the context information that need to be passed to JOS process flow

from calling system.

1. callerld. Callerld parameter is used to identify the invoker of process flow. In this
case it is CAWA.

2. correlationld. Correlation id is the main identifier used by the calling system
(CAWA) to tie the process flow Start call to the eventual CallBack Service call.

3. callBackServiceDataDetail.<name>= These are additional key value pairs that may
be required in future as required by the caller.

All of the above parameters are optional. However, if the context is not passed the caller
may not be able to associate the invocation with the callback.

Call back from Processflow
A new method (invokeCallBackService) is available for Process Flow DSL that will allow
process flow to call an external service. This service has following features
= The method internally invokes a REST call to the provided URL

= The method uses Basic Authentication for the rest call. The credentials for the
method call must be available in the process flow.

* The payload sent from process flow to the invoking application (CAWA) follows the
contract as shown in the example in the next section. All of the values, other than
keyValueEntryVo, are populated by the Process Flow engine. The DSL writer can
modify the keyValueEntryVo before the callback to pass any custom value from the
DSL to invoking application (CAWA)

= The result of the callback REST service (in CAWA) must be a String value.

= If the callback service invocation fails for any reason (such as a network issue), the
process flow activity fails and the process flow is marked as failed.

How to invoke the Callback Service declaratively

= Setup the callback URL in processflow system options. To configure a callback URL
you should add system options like <serviceName>CallBackServiceUrl, for eg.,
processCallBackServiceUrl.

1. In Process Flow admin console, navigate to Manage Configurations tab and System
Options sub-tab.

JOS Process Flows 21

Callback Service

ORACLE Process Flow Admin Console

Wedcome:, bdiadmin

Tue Apr 18 02:28 PDT 2047

Historical Process Fiow Exscutions [JTEUIPTEIUFIEUARE system Logs |

[EETTILTIIRR Log Lever | Process Notiications |

System Option Name

|LOADFROCESSDEF

LOADSEEDDATA

processFlowAdminBaseUn

|processFiomAdminBaseUiserAkas

processr giobal content

processFiowtiotficaton Qiobal enanie

processF ahan giobal

P aton g on,

System Option Value Action
fise] 28
[FaLse @z a
[t Db e oracte com T316-process- o @@
|GET_FROM_WALLET.GET_FROM_WALLET ZAN |
|Process at Time}nPr ol |
false iCaN |
[taise EAN |
talse ZAN |

Create New System Options

system Opticn Name |

System Option Value |

2. Scroll down to Create New System Options, enter System Option Name and System
Option Value. Url should be a valid ReST Service.

Iue Apr 15 UZiZd FUT ZUl

Process Flow Live Manage Process Flow Historical Process Flow Executions Manage Configurations System Logs

System Options Log Level Process Notifications

v

System Option Name

‘LOADPROCESSDEF

|oapseeDDATA

[processFlowAaminBaseun

},,. ion global content

|
\
|
‘DrocessF\owAdrm nBaseUrlUserAlias ‘
|
|

‘processF\owNoimcaﬁon.globa\ enable

|processFlowtiotification.global onCompleti

‘ processFlowNotification.global.onFailure ‘

Enter Option Name or Value fo Search... o e
"

System Option Value Action
[FALsE | @z w
[FaLsE | Z\w
[nittp://bir0DaDK idc. oracle com:7316/al-process-fiow | @ w
|GET_FROM_WALLETGET_FROM_WALLET | canl
[Process at TimejwnPr| [zl]
‘I’alse | W
[faise | Z\0
[raise | Z\w .

View/Edit System Options

Create New System Options

System Option Name ‘processcauﬂackservlceun

System Option Value

[lcreate credentials

3. C(lick Save.

22 Job Orchestration and Scheduler Implementation Guide

Save

Callback Service

ORACLE Process Flow Admin Console Weicome. bdiadmin

Tue Apr 18 02:31 POT 2017
Process Flow Live Manage Process Flow Historical Process Flow Executions Manage Configurations | [IE It)
| system options | [T TALY Process Notifications

System Option created successtully

View/Edit System Options

[Enter Option Name or Value to Search | A8

A
System Option Name System Option Value Action
|LoanFrocEssDEF] |FaLse | izAN |
loroseeooara | lrase | @i
|processc. url |ty sroiroiak Kie orack: com 7404 P " [Z8N |
|processk i |t Kdc.arack: com 7316/bd-process-Bow | @ @
|processFlowadminBaseUrtUserAlas |GET_FROM_WALLET.GET_FROM_WALLET | [ZaN"]
[processFiawtiotincation giobal content | [Process Hame] S{p at Time)] @
[processFiowtiotincation giobal enatle | [ratse | @

[processFiawtiatincation glabal anComlet] [rase] @ 8

Create New System Options
System Option Name ! | System Option Value |

4. Setup the callback URL credential alias in process flow. To add callback URL
credential alias you should add credential alias like
<serviceName>CallBackServiceUrlUserAlias, for eg.,
processCallBackServiceUrlUserAlias.

5. In the Create New System Options section, select Create Credentials checkbox.

Frocess Flow Live Manage Process Flow Historical Process Flow Executions Manage Conngurations | It 1

IBECEEE Loglevei | Process Hotifications |

|I' nter Option Name or Valua to Searc | Qe
System Option Name System Option Value Action
|LospProcessoEr | FALSE @ o
|LoanseEnDATA | FALSE @@
|9«.\:esscam:msemeun | | hitp:DIrD0ADK it oratle com: T 404 di-process Iz AN]
|ll1xt-s~sFIUmMn|inB;rscth | hitp itird0abk ide orache com 731 6Mbdi-process-Tow 73 | @
[processFiowaminBaseltuserias. | |GET_FROM WALLETGET FROM_WALLET @@
[processFiownaaication global.comtent | Process S{p 1 5ip al ${p izl
[processFiawtiotincatin giobia enabie: | [@ @
|pmessF|mmmauon.gmnal.oncompwn| faise iz aN] A
Create New System Options
System Option Name | | System Option Value |CET FROM_WALLETGET FROM_WALLET
Username | | Passward |
Flereate credentials E

6. Enter System Option Name, Username and Password for the URL provided in the
previous step. If the System Option Name for the URL is processCallBackServiceUrl
then System option name for credential should be
processCallBackServiceUrlUserAlias.

JOS Process Flows 23

Callback Service

Process Flow Live Manage Process Flow Historical Process Flow Executions [[ETELEPTIEUURNEETSN| System Logs

[system options | TEFTTY

System Option Name

LOADPROCESSOEF

LOADSEEDDATA

proc eun

processF

|processFiowAdminBaseUnliseralias

processFiowNobtk aton giobal content |

processElowhotfication global enable

processElowNotficabon global onCompiet

|FALSE

View/Edit System Options

System Option Value

|FALSE

imm:-’mlrouabk Iac.oracke. com: 7A04/Da-process-Rowire sourcesmatc i

-mm ADIrt0abk KIC.orache. Com: 7316/D01-proc £55-Row

| GET_FROM_WALLET GET_FROM_WALLET

|Process S{proc

I
(Taise
L

Hprod at

[raise

|ale
Action 0
@z, 8
(7 AN |
Z N |
Iz o |
@
Iz 4N |
Z 3N |
Iz 4N |

Create New System Options

System Option Name processCatBackSenvicelnuseralas

uUsername |processadmin
Flcreats credentials

System Option Value \GET_FROM_WALLET.GET_FF

PAssword sesssssssssss

7. Click Save.

ORACLE’ Process Flow Admin Console

Historical Process Flow Executions [JITITPPTSCCIUPIGTICIRN system Logs |

EELILEE LogLevel | Process Kotifications |

Weltome. bdiadmin

Tue Apr 18 02:45 PDT 2017

System Option and Credential created successiully
View/Edit s"‘ﬁ‘&lﬂ Bpllﬁﬂs
Enter Option Name of =N -]
System Option Name System Option Value Action
[oapPrRoCESSDEF |FaLse 20 |
[LosDseEDDATA |[FaLse @i
|processcamacksenceun |rnp: e | TADADO-Process %
|ocesscamBackServiceUniserAlias |GET_FROM WALLETGET_FROM WALLET @z a
[processFiowadminBaseun g spirooas iac. oracie com 7316/a-process-fow @i
|processFiowagminBaseuruserasas |GET_FROM_WALLETGET_FROM_WALLET @ o
[processFioutianticanon globat content |process Sproc Siproc ats @z a
[processFiowniotticaton giooal enable [raise -2 B
Create New Systern Options
System Option Name System Option Value |

Note: Credentials created through Ul are available after
server restart, but after redeployment of the application
credentials have to be created again.

8. Navigate to Manage Process Flow tab and select process flow, go to Process Flow

Configurations sub-tab.

9. Select Callback checkbox for the activities you want callback to be enabled. Select

Callback URL from drop down list.

24 Job Orchestration and Scheduler Implementation Guide

Callback Service

Diff_Fnd_ProcessFlow_From RMS Diff RXM no-spit Fri Apr 14 00-15.00 PDT 2017 o

DiffGrp_Fnd_ProcessFlow_From_RMS DiffGrp RXM no-split Fri Apr 14 00:20:00 PDT 2017 %0 B
InvAvailWh_Tx_ProcessFlow_From_RMS InvAvailWh RXM no-split Fri Apr 14 00:35:00 PDT 2017 % %) 0B
ItemHdr_Fnd_ProcessFlow_From_RMS {temHar RXM no-split Fri Apr 14 00:40:00 POT 2017 % &) 0
ltemimage_Fnd_ProcessFlow_From_RMS Iltemimage RXM no-split Fri Apr 14 00:45:01 PDT 2017 %0 | %) 0 |
ltemLoc_Fnd_ProcessFlow_From_RMS ltemLoc RXM no-split Fri Apr 14 00:50:00 PDT 2017 % %0 B
MerchHier_Fnd_ProcessFlow_From_RMS MerchHier RXM no-split Fri Apr 14 01:20:00 PDT 2017 % %) 0

OraHier End Erom_RM: OraHier BXM no-snlit____Fri Anr 14.01-25:00 POT 2017 i - ©

Process Flow Executions Process Flow Configurations Launch Process Flow Process Flow Details

Process Flow Executions For Diff Fnd_ProcessFlow

y
JTA Timeout - 12 Hours 0 Minutes 0 Seconds H
Activity Name Action Action Expiration Call Back Call Back Service URL Comments.
begin [m] Select URL v
Oski
Diff_Fnd_ExtractorActivity DHO‘IZ = processCaliBackSenviceUr |~ [|
Select URL
DSK\D rmsCallBackServiceur
Diff_Fnd_ExiractorStatusActivity W O processCallBackServiceUrl
- festC: Irl
Oer - idc.oracle.com:7404/bdi-proc b
Diff_Fnd_GetDataSetidActivity DHO‘I‘:} O [5{ /callbackstest Userslins processCallBackSenviceUrlUserAlias
Oskip
Diff_Fnd_DownloaderAndTransporterActivity (] Select URL v
OHold
= v
10. Click Save.
35T T
DIff_Fnd_ProcessFlow_From_RMS Diff RXM no-spit Fri Apr 14 00:15:00 PDT 2017 Wom 7pr 0'2‘001 7“ aTFo %) %) 0B
DiffGrp_Fnd_ProcessFlow_From_RMS DifiGrp RXM no-split Fri Apr 14 00:20:00 PDT 2017 B
InvAvaIWNh_Tx_ProcessFlow_From_RMS InvAvallwh RXM no-spit Fri Apr 14 00:35:00 PDT 2017
liemHdr_Fnd_ProcessFlow_From_RMS ItemHdr RXM no-split Fri Apr 14 00:40-00 PDT 2017
ltemimage_Fnd_ProcessFlow_From_RMS ltiemimage RXM no-split Fri Apr 14 00:45:01 PDT 2017
itemLoc_Fnd_ProcessFlow_From_RMS itemLoc RXM no-split Fri Apr 14 00:50:00 PDT 2017
MerchHier Fnd_ProcessFlow_From RMS MerchHier RXM no-split Fri Apr 14 01:20:00 PDT 2017
Qratier £nd ProcessFlow From RM Qratier RiM no-snit Fri Anr 14 012500 POT 2017 v

Process Flow Executions Process Flow Configurations Launch Process Flow Process Flow Details

Process Flow Executions For Diff_Fnd_ProcessFlow_From_RMS:

~
Activity configurations saved successfully for Process flow: Diff Fnd_ProcessFlow_From_RMS

0
JTA Timeout - 12 Hours 0 Minutes 0 Seconds H

Activity Name Action Action Expiration Call Back Call Back Service URL Comments
begin [m] Select URL ~

Diff_Fnd_ExtractorActivity gi:‘z :l [processcCallBackserviceur - ’—‘
Diff_Fnd_ExtractorStatusActivity g::‘z :l O [selecturL <] [—‘
Diff_Fnd_GetDataSetidActivity gi:“; :l O [SelecturL] |:|
DIff_Fnd_DownloaderAndTransporterActivity gi:‘z O [selecture <] [|

How to invoke the Callback Service programmatically

From the Process Flow DSL activity, you can invoke the callback service as shown in the
examples below. The callBackServiceUrl and callBackServiceUrlUserAlias property must
be setup in the System Options inside process flow.

Example 1: Short Form
Add the following line inside JOS process flow activity.

def retValue =
invokeCal IBackService(externalVariables.cal 1BackServiceUrl,
externalVariables.cal IBackServiceUrlUserAlias)

JOS Process Flows 25

Callback Service

Example 2: Long Form

In the long form API the callBackServiceData is an implicit parameter that is
automatically defined and user can update it with additional data inside an activity if
they want.

Add the following line inside JOS process flow activity.

//optionally update some data
cal IBackServiceData.keyValueEntryVo[0] .key = “Some Key”
calIBackServiceData.keyValueEntryVo[0].value = “‘Some Value”

def retvValue =
invokeCal IBackService(externalVariables.cal IBackServiceUrl,
externalVariables.cal IBackServiceUrlUserAlias, callBackServiceData)

Callback request Payload structure

The jos process flow will make a POST REST call to the callBackServiceUrl passing in the
following payload. JSON is the default content type.

JSON Payload Contract

{

"'processName™: "Abcdef Process',
“'processExceutionld’: "'123456",
"activityName': "Def Activity",

"correlationld': ''987654321",
“"keyValueEntryVo'': [
{

3
{
key: "pqr’”,
"“value': " 123
}
1.
}
XML Payload Contract

<?xml version="1.0" encoding=""UTF-8" ?>
<cal IBackServiceVo>
<processName>Abcdef_Process</processName>
<processExceutionld>123456</processkxceutionld>
<activityName>Def Activity</activityName>
<activityExecutionld>12345678</activityExecutionld>
<callerld>Xyz</callerld>
<correlationld>987654321</correlationld>
<keyValueEntryVo>
<key>abc</key>
<value>def</value>
</keyValueEntryVo>
<keyValueEntryVo>
<key>pgr</key>
<value>123</value>
</keyValueEntryVo>
</cal IBackServiceVo>

26 Job Orchestration and Scheduler Implementation Guide

Process Security

Call Back Service Scenarios

Activity Type

Activity Action
(Skip or Hold)

Callback behaviour (if
callback enabled)

Activity Status sent by
Callback

Activity Status if
Callback fails

Any None Callback will be called after | ACTIVITY_COMPLETE | ACTIVITY_FAILED
action part is complete or ACTIVITY_FAILED
according to the action
part success or failure.
Skip Callback will be called after | ACTIVITY_SKIPPED ACTIVITY_FAILED
action part is complete
Hold Callback will be called ACTIVITY_COMPLETE | ACTIVITY_FAILED
when hold is released and | or ACTIVITY_FAILED
after the action part of according to the
the activity runs action part success or
failure.
Special Cases
startOrRestartJob | None Callback will be called as ACTIVITY_COMPLETE | ACTIVITY_FAILED
Activity soon as the job start or restart | if the job was started or
call is complete restarted successfully.
ACTIVITY_FAILED if
the job was not started
or restarted
successfully.
waitForJobCompl | None Callback will be called after | ACTIVITY_COMPLETE | ACTIVITY_FAILED
etedOrFailed the Job status has reached if the job completed
complete or failed successfully.
ACTIVITY_FAILED if
the job failed.
Restart Scenarios
startOrRestartJob | None Job will be started or ACTIVITY_COMPLETE | ACTIVITY_FAILED
Activity restarted only if the Job was | if the job was started or
not started earlier or job restarted successfully.
failed. If the activity failed ACTIVITY_FAILED if
due to callback failure the job | the job was not started
will not be started. or restarted
successfully.
waitForJobCompl | None Callback will be called after | ACTIVITY_COMPLETE | ACTIVITY_FAILED
etedOrFailed checking the Job status, if it if the job completed

has reached complete or
failed, otherwise process will
wait for the job to reach
complete or failed status.

successfully.
ACTIVITY_FAILED if
the job failed.

Process Security

Process Flow Application uses basic authentication to access the system. The user must
belong to BdiProcessAdminGroup or BdiProcessOperatorGroup or
BdiProcessMonitorGroup to use the process flow REST services and process flow admin
application.

JOS Process Flows 27

Troubleshooting

There are two authorization roles designed for process flow application; Operator role
and Admin Role. Admin role has permissions to use all the functions provided by
process flow application. Operator Role has limited access compared to Admin, as
identified in the table below. Monitor role has the least access permissions.

Service/Action Monitor Role Operator Role Admin Role
Update Process DSL No No Yes
Start/Restart Process No Yes Yes
Skip/Hold /Release No Yes Yes
All other services Yes Yes Yes

Troubleshooting

Since the process flow can be written in Groovy and DSL, it is prone to programmer’s
mistakes. Any custom DSL must be properly tested before deploying. At present, the
process flow engine can detect syntax errors only at runtime. So it is possible to load an
incorrect process flow and fail during runtime.

At the end of an activity, the process engine invokes the next activity depending on the
result of activity execution (The “moveTo” statement). If you have empty activities
(possibly because you commented out the existing invocation statements), make sure the
activity result is valid.

If any activity fails, the process is marked as failed. So in case of process failure, look at
the activity details to find out which activity failed. Once the failed activity is identified,
the process variables can be inspected to look for any issues. Next step would be to look
at the logs, through the Process Flow Monitor application to see the details of the issue.
Once the issue is fixed, either restart or a new run of the process flow can be used
depending on the requirement.

Process Flow Didn’t Start

Verify the logs, it could be due to the missing Credentials Access Permission, missing
system credentials, missing system options or DSL parsing Error.

Deleted Process Flow Still Listed in the Ul

Deleting a process flow from jos-process-home doesn't deletes it from the process flow
application, because the process flow application refers the database entries, so in order
to delete a process flow from JOS Process Flow app, the script

DELETE_PROCESS_FLOW .sql(jos-process-home /setup-data/dml/) has to be run in JOS
Schema.

Best Practices for Process Flow DSL

= Use naming conventions for process flows and activities in process flow so that they
are easily identified. It is recommended that name of the process flow includes
“Process” and the name of activities ends with “Activity”.

= Use built in “startOrRestartJob” method to start/restart job in Job Admin.

= Use built in “waitForJobCompletedOrFailed” method to wait until job is complete or
failed.

= Access system options through “externalVariables”.

28 Job Orchestration and Scheduler Implementation Guide

Best Practices for Process Flow DSL

Use “processVariables” to share variables between activities.

Use built in “waitForProcessInstancesToReachStatus” to wait for other process
instances.

Use built in “waitForProcessNamesToReachStatus” to wait for other processes.
It is recommended to use “flo” as extension for process flow DSL file.
Use the built-in REST DSL to make rest calls.

Organize process flows as hierarchical parent child flows where parent manages the
child flows.

Avoid using too many waitFor calls as active threads are getting blocked.

JOS Process Flows 29

6

Scheduler

Scheduler Overview

The Scheduler application JOS) product suite assists in scheduling of batch processes to
run at predefined configured intervals of times. A schedule determines when a job or a
process or any program needs to be executed and the frequency of execution.

The Scheduler application runtime is based on container-managed Java EE timer service
to execute the schedules and utilizes Oracle WebLogic Server's implementation and
management of the timer service when deployed on WebLogic server.

Scheduler supports various schedules ranging from simple interval schedules such as
hourly, daily, and so on, to advanced cron-like scheduling.

Scheduler currently supports calling of REST services.

The Scheduler Console (Admin Ul) enables runtime monitoring and administration of
schedules where user can view, create, edit, delete schedules, manually run a schedule,
enable/disable schedule, set up notifications for schedules and so on.

JOS Scheduler Features

= Scheduler is a Web application that provides GUI for managing schedule based
workload.

= DSL based Schedule Action — Call process flows, run any local/remote programs.
= Runremote programs with REST calls.

= Externalized Schedule Definition and Schedule Actions. Easily import/export
Schedule and Action definitions

= GUI to Create, Edit, Delete, Enable/Disable schedules
= Monitor schedule executions and logs
= Monitor schedule’s progress and history

= Built in Email notification

Scheduler Concepts

Schedule Definition

A schedule definition comprises of details of a schedule such as Schedule Name,
Schedule Group which indicates logical or functional grouping of schedules, and
Schedule Description.

Schedule Execution

A schedule execution is an instance of scheduled run of a schedule at the specified
frequency.

Schedule Types

A schedule can be an interval-based schedule or calendar-based schedule.

Scheduler 31

Scheduler Concepts

Interval Schedules

An interval-based schedule is a schedule that repeats at fixed interval of time starting
from a specific time. For example, hourly, daily, weekly, every 5 minutes and so on.

Calendar Schedules

A calendar-based schedule is cron-type of schedule that specifies different times that the
schedule runs. More complex schedules that can be specified as cron expression are
defined as calendar-based schedules.

The following parameters define a calendar-based schedule, same as the parameters in a
cron expression: Minutes, Hours, Day of Week, Day of Month and Month.

Note: that the Scheduler does not currently support Seconds
and Year parameters in a calendar schedule.

Scheduling Mechanisms

Simple Scheduling

Simple schedules are predefined schedule frequencies that are available as options for
the user to choose readily. The following are the simple schedules that the Scheduler
supports.

= Hourly
* Daily

= Weekly
= Monthly

= Weekday [Mon-Friday]

= Weekend [Sat-Sunday]

= Saturday

= Sunday

= First day of every month

= Last day of every month

* One time only (run once), and

= User-specified frequency with interval in the units of:

= minutes, hours, days or weeks.

Advanced Scheduling

JOS Scheduler supports advanced scheduling which is cron-like scheduling. Calendar-
based schedules that can be expressed in cron-format can be setup with the advanced
scheduling capability of the Scheduler. Advanced scheduling is defined with the
following parameters (similar to that of cron expression) and the corresponding range of
values:

* Minutes : 0-59

= Hours:0-23 (12:00 a.m. - 11:00 p.m.)
= Day of Week : Monday - Sunday

* Day of Month : 1-31

* Month :1-12 (January - December)

32 Job Orchestration and Scheduler Implementation Guide

Scheduler Concepts

If a schedule is created is created with multiple values for the above parameters, then the
schedule will repeat at all those specified times.

Schedule Frequency

The schedule frequency defines the frequency at which a schedule has to be repeated at
the configured time and interval starting from a given point of time. The schedule
frequency has the following parameters that determines when the schedule has to be run.

Schedule Start Datetime
It specifies the start date and time when a particular schedule has to start executing.

For interval based schedules, this is the first time the schedule runs and then repeats
based on the specified interval.

For example, a schedule with start datetime as 2016-08-15 10:00a.m. and repeat 'Daily’
will first run at 2016-08-15 10:00 a.m. and next run at 2016-08-16 10:00 a.m. and so on.

For calendar schedules (cron schedules), this defines the time from when the schedule
will become effective and starts executing based on the frequency. So it is not necessarily
the first run of the schedule, though it very well may be.

For example, a schedule with start datetime as 2016-08-15 10:00 a.m. (which is a Monday)
but repeat every Thursday, will first run at 2016-08-18 10:00 a.m. (Thursday) and
subsequently next run at 2016-08-25 10:00 a.m. (Thursday) and so on.

So the Start Datetime here signifies the datetime the schedule becomes effective and that
it will not run before that datetime. However, here the Start Datetime can very well be
specified as 2016-08-18 10:00 a.m. (Thursday) and repeat every Thursday.

So in summary, for interval-based schedules, first run of the Schedule equals Schedule
Start Datetime. For calendar-based schedules, first run of the Schedule may or may not be
equal to the Schedule Start Datetime, based on the schedule recurrence specified.

Schedule End Datetime

It specifies an end date and time when the schedule should stop executing and no longer
run. When a schedule has no end datetime specified, it runs indefinitely.

Note: that the end datetime is inclusive for the schedule
execution, meaning if the schedule recurrence coincides with
the end datetime, the schedule will execute at the end
datetime and only then does not repeat.

For example, say, Schedule Start Datetime: 2016-08-15 10:00 a.m., repeat 'Hourly’,
Schedule End Datetime: 2016-08-15 11:00 a.m., then the schedule will run at 10:00 a.m.
and also at 11:00 a.m. before ceasing to run.

Recurrence / Repeat Interval

This specifies the frequency at which the schedule repeats. This is same as described in
Simple and Advanced Scheduling.

Schedule Next Run Datetime

This indicates the date and time of next occurrence of the schedule, obtained based on the
configured schedule frequency.

Scheduler 33

Scheduler Concepts

Schedule Timezone

All the date and times in the Scheduler are based on the timezone of the server (JVM)
where the application is deployed.

The Scheduler Console (UI) displays the server’s current date and time with timezone
(the current time displayed gets refreshed when the Ul is refreshed).

When creating or updating a schedule and in monitoring schedule executions in
Scheduler Console, users should note that the date and time are as per the timezone
setup in the application server and not the local timezone.

Schedule Action

Schedule Action Definition

The Schedule Action defines what is executed when the schedule runs at the specified
frequency. It is a DSL (domain specific language) that is based on Groovy. The schedule
action has a simple syntax as follows.

action {
//Define what needs to be executed, here. Say invoke a REST service.

}
Currently Schedule Action supports calling REST services. JOS process flows are called
by the Scheduler as REST services.

For example, to trigger a JOS process flow named Store_Fnd_ProcessFlow_From_RMS,
the following schedule action is defined.
action {

(POST[externalVariables.processFlowAdminBaseUrl +
'/resources/batch/processes/operator/Store_Fnd_ProcessFlow_From RMS'"J"externalVari
ables.processFlovAdminBaseUrlUserAlias) as String

POST denotes the REST method.

processFlowAdminBaseUrl is an entry key in 'externalVariables' map variable used by
the Scheduler runtime and specifies the BDI Process Flow Admin's base URL. The value
for processFlowAdminBaseUrl is specified during install time and gets stored in the BDI
System Options. The value of processFlow AdminBaseUrl will be like

https:/ /<host>:<port>/bdi-process-flow.

For example, https:/ /example.com:8001 /bdi-process-flow

= /resources/batch/processes/operator/Store_Fnd_ProcessFlow_From_RMS is the
relative REST URL to call the process flow.

= Itis of the form /resources/batch/processes/operator/<process flow name>.

= processFlowAdminBaseUrlUserAlias is an entry key in 'externalVariables' map
variable used by the Scheduler runtime and specifies the alias name for JOS Process
Flow Admin's user credentials to access the process flow REST service.

- The value for processFlow AdminBaseUrlUserAlias is specified during install
time and gets stored in the BDI System Options.

Basic authentication is used to access the JOS process flows. The Scheduler uses
processFlow AdminBaseUrlUserAlias to lookup the credentials in the runtime secure
wallet where the credentials specified at install-time are stored.

Scheduler by itself does not manage executions of process flows called from within the
schedule action and any dependencies associated thereof. Scheduler only triggers process
flows. The execution of process flows is done by the Process Flow engine.

34 Job Orchestration and Scheduler Implementation Guide

Scheduler Concepts

For any dependencies between execution of process flows to be managed, it is
recommended that such dependencies are defined in the JOS Process Flow Admin and
not in the Schedule Action.

For example, if process-flow-2 needs to be run after process-flow-1 completes, use
Process Flow Admin to define this dependency and not in the Schedule Action.

It is recommended to avoid time based dependency management in execution of process
flows from within the Scheduler, but rather use Process Flow Admin to coordinate such
dependency execution requirements.

Note: For security reasons, usage of certain keywords are
not allowed in the Schedule Action DSL. When defining the
schedule action in the Scheduler UI, any such forbidden
keywords if used will prevent schedule from being created
or updated. A schedule cannot be run if such keyword is
present in the schedule action definition.

Schedule Action Type

There are two types of Schedule Action - Sync and Async. When creating a schedule and
defining a schedule action, user needs to specify whether the schedule action is sync or
async. Scheduler determines the action execution statuses according to the action type
specified.

Sync Action

Executes synchronously and returns a result after its successful or failed completion
(however long the action may run).

Async Action

The action is asynchronous and returns a response immediately when triggered, but will
continue to execute. The actual process completes at a later time. The end result of the
action is not known to Scheduler in this case.

Schedule Action Execution Status

Indicates the status of execution of the schedule action when the schedule has run at the
configured frequency of time.

A schedule execution can be in one of the following statuses depending upon the
Schedule Action Type and its execution.

» Triggered (applicable only for “Async’ action)
» Started (applicable only for ‘Sync” action)
= Failed (applicable for both Async and Sync actions)

Schedule Action Type and Execution Status
Schedule action type determines the schedule action status during the execution lifecycle.

Sync Action Execution Statuses

Executes synchronously and returns a result after its successful or failed completion
(however long the action may run).

* When sync action starts, the Schedule Action status will marked 'STARTED'.

* When the action completes and returns a successful result, the status will be marked
'COMPLETED'.

Scheduler 35

Scheduler Runtime

= When the action does not complete because of an exception or returns a failed
response (return value = “FAILED”), then the status will be marked 'FAILED'.

Async Action Execution Statuses

The schedule action status will only be TRIGGERED' when the Scheduler successfully
invokes the schedule action.

In case there is an exception in invoking the action itself, then the status is 'FAILED'.

By default, all BDI process flows are asynchronous that return an execution Id when
triggered, but continue to run to invoke the batch jobs that complete at a later time.

How the Action Execution Statuses are determined?

* Scheduler marks the Action Execution Status as 'FAILED' when there is an exception
in executing the action or when an exception is thrown from the schedule action. In
order for the Scheduler to mark the execution of schedule action as 'FAILED' when
the action has been executed, the action should either throw an exception or return
value as 'FAILED'.

= If the schedule action returns null or any other return value gracefully, the action
execution status will be be marked "TRIGGERED' for async action and
'COMPLETED' for sync action and the returned response is stored as such in the
Schedule Action Execution Log.

Schedule Status

A schedule can be in one of the following statuses

= Active:An Active schedule indicates that the schedule is running at the specified
frequency.

= TInactive: An Inactive schedule indicates that the schedule has reached its end
datetime and no longer runs.

= Disabled: A Disabled schedule indicates that the user has disabled the schedule to
not run at its specified frequency.

Scheduler Runtime

Scheduler Startup
As the Scheduler is deployed and the application starts up, the Scheduler service
performs the following actions:
* Loads the schedules defined in the seed data sql script in the installer. This means,
schedule definitions are inserted in the corresponding Scheduler infrastructure table.

= Loads the schedule action dsl for each corresponding schedule from the *_Action.sch
files in the installer. Each schedule definition in the table is updated to include its
corresponding schedule action.

» The Scheduler service sets up the runtime timers for each schedule.

When the application is deployed first-time, all schedules will be set up new. However,
when the application is redeployed or the application server is restarted, the schedule
timers that are already created and exist, will not be recreated.

All seed data schedules need to be specified with status as ‘Active’. This ensures that the
schedule timers are created at startup and the schedules start to run as per the frequency
defined.

36 Job Orchestration and Scheduler Implementation Guide

Scheduler Runtime

When a schedule action dsl contains any restricted keyword, the schedule will be
‘Disabled” at startup and will not run. User has to correct the schedule action definition
from Scheduler UI and enable the schedule to make it active.

Schedule Runtime Execution

Scheduler uses application server’s implementation of Java EE compliant timer service to
execute the schedules at runtime. When a schedule is created, Scheduler sets up a timer
in the application server based on the schedule frequency configured. At each scheduled
time, the application server invokes callback method where the Scheduler will execute
the schedule action.

Each schedule timer executes in separate thread, so schedule executions do not block
each other. Each schedule execution itself is run synchronously in its own thread, that is,
the execution is blocked until it completes. But the schedule action can be specified to be
asynchronous (Async action) or synchronous (Sync action) based on the action dsl
defined for the schedule.

It is appropriate to specify a schedule action as “async” when all the service calls made
within the schedule action are non-blocking asynchronous calls and the action defined
runs in different thread from that of the Scheduler.

If any of the service call within the schedule action is a blocking synchronous call and the
action is not defined to run in separate thread, then the action type should be ‘sync’.

Specifying the schedule action type ‘async’ or ‘sync’ based on the action dsl definition
determines the runtime execution behavior and statuses of the schedule execution. This is
explained below.

Schedule Execution - Async Action

Schedule Action Action Execution
. Set Action Execution Status =
Action Type = Async TRIGGERED
. ¢ - Execute Action
action { -Action defined is async,
//Async actions, say, no blocking call,
/lasync REST service call control returns immediately

} v

On exception, set
Action Execution Status =
FAILED

When the schedule action execution starts for async action, the action execution status is
set to “TRIGGERED’, and the action is executed. As the action type is specified ‘Async’,
the action should be non blocking, either returning a response immediately or not
returning a response and continuing execution, but runs in separate thread returning the
control immediately.

The execution of the action and the eventual status thereof will not be known to
Scheduler. Once the control is returned, the schedule action execution ends but the status
remains “TRIGGERED'. In case of an exception when the action is triggered, the status is
set to ‘FAILED’ and the execution ends.

Scheduler 37

Scheduler Runtime

Schedule Execution - Sync Action

Schedule Action Action Execution

Set Action Execution Status =

Action Type = Sync STARTED
action { | - Execute Action
/ISync action,for example, - Action is synchronous,
/la REST service call blocking call, wait for response
/lwaits for response g # ¢
}

On completion

Ogef’é{iﬁﬂg’ﬁ’ (response returned),
FAILED set Status =
COMPLETED

When the schedule action execution is started for ‘sync” action, the action execution
status is set to ‘STARTED'. As the action type is specified ‘sync’, the action is blocking
and runs in the same thread as the schedule execution.

The schedule execution ends only when the action completes returning a response or
throws an exception, thereby releasing the execution thread.

After the schedule action completes successfully returns, the status is set to
‘COMPLETED'. But if the action return value is ‘FAILED’ or the action returns throwing
an exception, the status is set to ‘FAILED’.

For sync actions, the action execution status in Scheduler can indicate the actual
execution status (either completed or failed) of the process that was executed.

Schedule Execution Failover

All schedule timers created by the Scheduler are persistent. This enables failover feature
that in case of unexpected server shutdown or downtime, the missed schedules will be
run once the server is back up. That is, the schedules that should have been run during
the downtime, will be run as soon as the server is back up and the application is in
running state.

Note that a missed schedule will be run only once, not as
many times as it was missed during the downtime. For
example, if a schedule is scheduled to run every 5 minutes
and the application server is down for 15 minutes and
restarted, the schedule will be run only one time and not 3
times. This is a feature supported by the Java EE container.

Schedule Notification

Scheduler supports email notification of scheduled runs at runtime. The available options
of events for notifications on a scheduled run are:

= Notify when the schedule action execution begins

— This occurs when the schedule action execution is ‘Started” for sync action and
before triggering of action execution for async action.

* Notify when the schedule action execution ends successfully

38 Job Orchestration and Scheduler Implementation Guide

Scheduler Console

— This occurs when the schedule action execution status is “Triggered’ for async
actions and ‘Completed’ for sync actions

Notify when the schedule action execution fails

— This occurs when the status of schedule action execution is ‘Failed’, when one of
the following occurs: An exception is caught in the Scheduler service itself, when
an exception is thrown by the schedule action dsl, when the schedule action dsl
returns the string ‘FAILED’.

Scheduler Infrastructure Schema

The Scheduler infrastructure relies on the following schema to store the schedule
definitions and schedule executions.

Scheduler service captures all schedule executions at runtime and persist the execution
instances in the corresponding infrastructure table.

Table Name

Description

BDI_SCHEDULE_DEFINITION This table contains all the schedule definitions created, including schedule

frequency, schedule notification information and schedule action dsl for
each schedule.

Seed data schedules are loaded in this table at deployment time during
application startup.

BDI_SCHEDULE_EXECUTION All schedule executions at runtime are persisted in this table.

BDI_SYSTEM_OPTIONS This table contains system-level global parameters as key-value pairs used

by the Scheduler at runtime, such as, Process Flow Admin Base URL,
Process Flow Admin User Alias, which are configured at install time by the
user. User can also add system parameters to be made available to the
schedule actions.

Best Practices for Scheduler

Use “POST” DSL method to post to REST URL.
Use “externalVariables” for accessing variables from BDI_SYSTEM_OPTIONS table.
Use “sch” as extension for schedule action DSL file.

Try not to use time-based dependency management between schedules, instead use
process flow to manage dependency.

To schedule any existing jobs or programs, try to expose them as REST services and
use the built-in dsl POST method in schedule action for executing the programs.

Minimize use of synchronous schedule actions since they block until completion
during each schedule execution.

Scheduler Console

Scheduler Console (Admin UI) is a web user interface provided by Scheduler where
users can monitor and manage schedules, including creating, updating, deleting,
disabling or enabling schedules, manually running schedules, viewing schedule
executions and schedule logs.

The following describes various functions available in Scheduler Console in the current
release.

Scheduler 39

Scheduler Console

Note: It is recommended to use Chrome web browser to
access Scheduler Console since the calendar widget for
datetime fields are supported by Chrome browser and not
by Firefox or IE as of now.

Schedule Summary

This is the home page that provides the overall summary of the scheduler runtime. It
displays the the following information.

Schedules and Executions
This displays the total count of:
» Active Schedules
» Schedule Executions today
= Schedule Executions that were successful today
= Schedule Executions that failed today

Note: that today here indicates the duration from midnight
to now.

Schedules and Executions Screen
EETTASTE S ianage Schedules | Schedule Executions | _System Logs §

Total Active Schedules Schedule Executions Today Schedule Executions Successhul Today Schedule Executions Failed Today
a0 » n 1

Upcoming Schedules

Lists the future schedules that are expected to run in the next 24 hours from now.

Upcoming Schedules (37]

dul hedul P Schedule Name Schedule Next Run Schedule Status
1 CodeDetal CodeDetail_Fnd_From_RMS_Schedule Sal Aug 20 00:00000 FOT 2016 ACTIVE

2 CodeHead CodeHead Fnd From RMS Schedule Eat Aug 20 000500 POT 2016 ACTIVE

3 DeitverySiot DeliverySiol_Fnd_From_RMS_Schedule Sat Aug 20 00:10:00 POT 2016 ACTIVE

4] Dif_Fd_From_RMS_Schedule Sat Aug 20 00:15:00 FOT 2016 ACTIVE

5 ol CiftGep_Fd_From_AMS_Schedule Sal Aug 20 0020000 POT 2016 ACTIVE

L} Firisheraddr FinigherAddr_Frd_From_R2MS_Schedule Sal Aug 20 00:2500 POT 2018 ACTIVE

7 Invenary InvAwailStore_Tx_From_RMS_Schedule Sat Aug 20 00:30:00 POT 2016 ACTIVE

8 Inventory Ireéwadh_Tx_From_AMS_Schedule Sat A 20 00:35:00 POT 2016 ACTIVE

2 Tem Rembdr_Frd_From_RMS_Schedule Sal Aug 20 00:40.00 POT 2018 ACTIVE

11} [Nerimage_Fod_From_RMS_Schedule Sal Aug 70 004500 FOT 2016 ACTIVE =

Schedule Executions Failed Today

This lists the schedule executions that have failed today (from midnight to now).

40 Job Orchestration and Scheduler Implementation Guide

Manage Schedules

Schedule Executions Failed Today (1)

Schedule Execution Schedule Schedule Execution Schedule Action Execution

d d Schedule Name Datetime status Schedule Action Execution Log
SCHEDULED RUN: Action triggered at: Q
‘Wed Aug 31 04:11:40 PDT 2016
Wed Aug 31 04:11:40 PDT Action Type: ASYNC
1354 8 InvAvailWh_Tx_From_RMS_Schedule 5016 FAILED Action Status: FAILED
Action Response: Exception: HTTR 500
Internal Server Error

Schedule Executions Completed / Triggered Today
This lists the schedule executions that are completed or triggered today (from midnight
to now). A status of ‘Completed’ represents sync actions and status of “Triggered’
represents async actions.

Schedule Executions In Progress Today
This lists the schedule executions that were started but have not completed and in
progress today (from midnight to now). This is applicable only for sync actions that are
in ‘Started’ status.

Schedules Past Due

This lists the schedules that failed to run at the scheduled time (that is, schedules whose
next run time is before the current time are displayed here). Ideally, there should be no
missed schedules unless there maybe an internal server issue that the schedule timer
failed to run.

Manage Schedules

Manage Schedules page displays list of all schedules and details of each schedule in
Schedule Detail view and corresponding schedule executions in Schedule Executions
view for the schedule.

The schedules list provides options to filter schedules based on Schedule Name, Schedule
Group, Schedule Status, Schedule Frequency. There is also an option to filter upcoming
schedules based on date range.

The ‘Create Schedule’ function will be available in this page for admin users.

Scheduler 41

Manage Schedules

ORACLE Scheduler Console

Schecuie Surmary JTSIPRRETTR Schecie Exvcuions | _System Logs

Welcoms, schaduleadmin
Thu Oct 06 20:38 GMT-06:00 2016

B Filter |Schedule Nams

Schedule Name

¥ CodeDetal Fnd_From_RMS_Schedule
2 Codetend_Fnd_From_RMS_Schedule
3 DefiverySlol_Frd_From_PMS_Schedude
4 Dift_Fnd_From_RMS_Schedule

5 DHIGI_Fnd_From_AMS_Schedule

EEIEE schedule Exccutions]

schedule
Group

CodeHiad

DeliverySion

Schedule Start
Sat Mar 12 00:00:00 GMT-06:00
016

Sax Mar 12 00:05:00 GMT-04:00
2016

‘Sat Mar 12 00:10:00 GMT-06:00
2016

Sat Mar 12 00:15:00 GMT-06:00
2016

Sat Mar 12 00:20:00 GMT-08:00
2018

Schedule Frequency

Daily

Daily

Daily

Daily

o
Schedule Next Run Schakite Schedule End
Status
Fri Oct 07 00:00:00 GMT-06:00)
Ative Pver
2016
Fri Oct 07 00:05:00 GMT-06:00 i o
2016
Fri Oct 07 00:10:00 GMT-06:00 P e
2018
Fri Oct 07 00:15:00 GMT-06:00 :
: Aaihve Never
2016
Fri Cct 07 00:20.00 GMT-06:00
oo Acve reever

2016

Creating a Schedule

7200 @

The Create Schedule’ option displays one page where user can enter and save all
required information to create a schedule. The page displays input fields under four

sections as follows.

Basic nlo

Schedule Oroup: [

Sehedule Name: M Sehacidn 41

Schedule Description;

Frequency

Schadule Start Datetime: | 00032018, 00 35 PM

Schedule End Daletime: ® Never On

Simple Scheculing Advanced Scheduling

Schedule | Gaily

Basic Info

Seheduie Action

® Amme U sync

action { |

eatifearion

When schedule execution | Starts

Fails " Triggered | Completed

Schedule Name, Schedule Group and Schedule Description are entered under Basic Info.

Schedule Name and Schedule Group are required fields.

Schedule Name must be unique. User can choose an existing Schedule Group or add a
new group name for the schedule.

There is limitation for the number of characters that these fields can accept.

Schedule Action

Specify a valid schedule action definition here, that will get executed when the schedule

runs.

If any restricted keyword is present in the action definition, schedule cannot be saved,
and when saving the schedule an error highlighting the restricted keyword will be

displayed.

42 Job Orchestration and Scheduler Implementation Guide

Manage Schedules

Also choose here whether the schedule action is ‘Async’ (which is the default selected
option) or ‘Sync’.

Note: the schedule action is not validated or compiled for
syntax when creating schedule, so any syntax or
programming error in the action definition will result in an
exception at runtime and the schedule execution will fail.

Schedule Action

® Async sync

action { }

Schedule Frequency
It consists of Schedule Start Date time, End Date time and Schedule Recurrence.

Schedule End Datetime is ‘Never’ by default meaning the schedule never ends and
repeats indefinitely. If the schedule has an end datetime, user can enter a specific
datetime.

Start Datetime defaults to 5 minutes from current time and End Datetime defaults to 6
minutes from current time when chosen.

Start and End datetimes should be future dates. Schedule End datetime if specified
should be after the scheduled start datetime. These validations will be done when saving
the schedule.

Scheduler provides two options to specify recurrence of schedule - Simple Scheduling
and Advanced Scheduling. Use the options tabs to toggle between Simple and Advanced
Scheduling options.

Simple Scheduling provides the following predefined schedules that user can choose
from dropdown list.

* Hourly

* Daily (selected by default)
» Weekly

* Monthly

= Every Weekday [Mon-Friday]
= On Weekends [Sat-Sunday]

= Every Saturday

= Every Sunday

= First day of every month

= Last day of every month

One time only

Specify a different frequency

User can use this option to specify a recurring interval in minutes, hours, days or weeks,
for example, 30 minutes, 2 hours, 3 days, and so on.

Scheduler 43

Manage Schedules

Advanced Scheduling enables user to specify complex schedules similar to a cron
expression. User can choose multiple values for Hours, Minutes, Day of Week, Day of
Month and Month options using the multi-select lists.

The default schedule frequency here is daily midnight (Hours: 12 a.m., Minutes: 0 are the
values selected by default).

Simple Scheduling Advanced Scheduling

Hours Minutes Day of Day of Month
Week Month

12 a.m. 0 Sun 1 Jan
1am. 1 Mon 2 Feb
2am. 2 Tue 3 Mar
3am 3 Wed 4 Apr
4am. 4 Thu 5 May
5a.m. 5 Fri] Jun
6 a.m. 6 Sat 7 Jul
7 am. 7 8 Aug
gam. 8 9 Sep
gam. 9 10 Oct
10 a.m. 10 11 Nov
1l1am. - 11 ~ 12 - Dec

Schedule Notification

Use schedule notification option to enable email notification for the schedule when
schedule execution starts or fails or completed.

Enter valid email addresses for notification. When enabled, email alerts will be sent
based on the options selected.

Starts:

When this option is chosen, email will be sent when the schedule execution starts, that is,
when the schedule runs at the scheduled interval, and just before the execution of
schedule action.

Fails:

Email will be sent when there is an exception in schedule execution or when the schedule
action throws an exception or returns ‘Failed” response. This means the schedule action
execution will be in ‘Failed” status.

Triggered / Completed:

Email will be sent when the schedule action execution status is “Triggered’ (for async
actions) and ‘Completed’ (for sync actions). This essentially means the schedule
execution is successful.

44 Job Orchestration and Scheduler Implementation Guide

Manage Schedules

Notification

When schedule execution Starts Fails Triggered | Completed

Email

Note: for schedule notification to work, mail session needs to
have been configured in the WebLogic server. Refer JOS
Installation Guide for details on the configuration of mail
session.

Updating a Schedule
A schedule can be updated by selecting the schedule from the Manage Schedules page
and using the Edit option in Schedule Detail view.

The Edit page is same as that of the Create Schedule page with the schedule information
populated. Update the values as required in the relevant sections as explained previously
for creating schedule. Only admin user can edit a schedule.

Note: that updating schedule frequency will validate
schedule start datetime and end datetime (if specified)
similar to when creating schedule.

Updating any other details other than schedule frequency will not validate the existing
schedule frequency as the schedule will continue to run at the already defined frequency
and only the other details of schedule definition will get updated as modified by the user.

When changing the schedule action definition, it will be verified for any restricted
keywords.

Schwie Do

ZO00 W

Schedcie Name: Saore_Fra_From_RMS_Schedue
L)
‘Schedule created from seed data. Thes scheduse cals process
fiow: Ssoee_Fd_ProcessFiow_From AMS.

Sehedis Descsipton:

Frequency Metificatian

Schedle Stan Datetime: GAU127016, 0705 AM When scheule sxecution Suris #Falls Triggered | Compieted

Schduis End Datetiss: & Nover -/ On Emafl santhosh ananE 0. com

Disabling a Schedule

A schedule can be disabled by selecting the schedule from Mange Schedule page and
using the ‘Disable schedule” option in the Schedule Detail view. Only admin and
operator users can disable a schedule.

Scheduler 45

Manage Schedules

Disabling a schedule will change the schedule status to ‘Disabled” and the schedule will
no longer run at the specified frequency. However the schedule can be manually run
using the ‘Run Schedule Now’ option.

Note: that ‘Inactive’ schedule cannot be disabled, as an
inactive schedule has reached its end already and no longer

runs.
Schedule Detall
@0
has been canceled and wil not be nun wtl i = enabled again or the schedule frequency s updated

‘Basic info Schedule Action
Schedube Group:
Schedule Name: Seone_Fnd_From_RMS,_Schedule '

ISa0ie Fid. Fiow_From_RMS] eaemalanabies processFio

Schedule crealied from seed data, This schedule calls process
fow: Sanre_ Fnd_Processiiow_From_RMS.

Schedule Descsiption:
Frequency Hotification
Schedule Start Datetime: 2016.03-12T02.08 ‘When schedule execution Staris < Fails < Triggeved [Completed

Schedule End Datetime: = Mever On
Emall ‘sarshosh ananthBoracie.com

Schedule Doy

Enabling a Schedule

A disabled schedule can be enabled again using the ‘Enable schedule” option from the
Schedule Detail view. Only admin and operator users can enable a schedule.

Enabling the schedule will change the status of the schedule to ‘Active’ and the schedule
will resume running at the specified frequency.

OO fi

e schedule has been enabled and = active now.

Basic info Schedule Action
Schedule Group: Sxoue . * Async Sync
acton |
Schedule Name: Slore_Frd_From_FMS_Schedule (POSTieviemalvanabies processFowAdmnBaseLn «

b WptocessbtloperataiSioee_Fd_ProcessFiow_From_RMS]edemalmrables processii
Schedule created om seed data. This schedule calls process ‘whdmingaseUriUsenaliag) o3 Siring
flowr: Sivoe_Fnd_ProcessFlow_From_RME 1

Schedule Description:

Frequency Natification
Schedule Start Datetime: 2016-03-12T0205 When schedule executson Starts < Fails < Triggered | Completed
Schedule End Datetime: * Never on Email oanthosh ananth. Soracle com
Schedule Doy
Deleting a Schedule

A schedule can be deleted using the ‘Delete schedule’ option in the Schedule Detail view.
Only admin user can delete a schedule.

46 Job Orchestration and Scheduler Implementation Guide

Manage Schedules

Note: Deleting a schedule will delete the schedule definition
and also its entire execution history. The schedule will no
longer exist and will not run after deletion. There is no way
to restore a deleted schedule except by creating the schedule

again.
00 @
Basic info Schedule Action
Sehedule Group: Saore 5 “ Amne Syt
achon |
Schedube Name: Store_Fnd_From RMS Schedule (P05

temalviiables. processFiomadmindaseiin +

e J ri0re_Frd Tow_From_RMSexs bles processFis
whdminBaselriUserAkns) a5 Szing

Schedule cresed from seed datn. This schedule calls process
flowr: Store._Frid_ProcessFlow_From_RMS. 1

Schedube Descrption:

Frequency Katification

Schedube Start Datetime: 2016.03-12T0705 When schedule execution | Starts < Fails < Triggered | Completed

Schedule End Datetime:
o Newer On Email sarghosh ananshiorncle com

Schedule | Das,

Schedule a Manual Run

Any schedule can be manually run using the ‘Run Schedule Now” option from the
Schedule Detail view. Inactive and disabled schedules can also be manually run.

This option is provided so that user can run a schedule on demand when required. Only
admin and operators can access this function.

When the schedule is run manually, the schedule action is submitted for execution in the
backend and the result of execution can be seen from the Schedule Executions view.

700
Schedule Action successhully submined for enecuion. See Schedule Executions for Suither detail an the statusiesalt of execution
Basic info Schedule Action
Schedule Group: v = . Ammc © syne
aczon |
Schedule Name: Saore_Fnd_From_RMS_Schedule {POSTlesternalvirisbies. processFlowAdmintiaselr +
" ! From_RMET, IViarubles. processFio

wADminBaseU iserAlas) as Siring
1

Schadie crested om seed data. This schedule calls process
Fow: Store_Fd_ProcessFiow_From_RMS.
Sehedule Deseription:

Frequency Natification
Schedule Start Datetime: 2018-03-12T02.05 When schedule eecution Starts < Fails < Triggered | Completed
Schedule End Dateteme: * MNever on
Emall sanitesh snanthiforace com
Schedule

Scheduler 47

Manage Schedules

Schedule a Executions

From the Schedule Executions page user can view all available historical schedule
executions. The page will display schedule executions for the last one week by default.
The User can use the search option to enter a different date range to fetch the
corresponding schedule executions.

Within the list of schedule executions, the records can be filtered based on Schedule
Name, Action Execution Status and any string within the Action Execution Log. The list
of scheduled executions are sorted by schedule execution datetime, the latest first.

e i L Y el | Schedule Executions]

Schedule Executions From 09/26/2016, 12:48 PM To | 10/03/2014, 12:48 PM Go

List of Schedule Executions {281)

Filter | Schecule Name . L@

SCHEDULED RUN: Action miggered at: Mon Oct
03 020500 COT 2018

1280 £ Stone_Frd_From_RMS_Schedule Man Ot 03 02:05:00 COT 2016 TRIGGERED Actian Type: ASYNC
Action Stalus: TRIGGERED
Action Resparse

SCHEDULED RUN: Action Iriggered a: Mon O
03 02:00:00 COT 2016

1279 25 StoreAddr_Frd_From_RMS_Schedule Mon Oct 03 02:00:00 COT 2016 TRIGGERED Action Type: ASYNC
Action Stalus: TRIGGERED

Action Response

SCHEDULED RUN: Acton triggered at Mon Ot
03 01:55:00 COT 2016

1278 24 RepitemLoc_Fnd_From_RMS_Schedule Mon Ot 03 01:55:00 COT 7016 FAILED Action Type: ASYNC

Action Status: FAILED

Action Resporrse: Exception. HTTR 500 Inernal
SCHEDULED RUN: Action triggered at: Man Oct
03 01:50:00 COT 2018

1277 23 Relatagnemn_Fnd_From_RMS_Schedule Man Oct 03 01:50:00 COT 2016 FAILED Action Type: ASYNC
Action Stans: FAILED

Acnon Response: Excepoon: HTTP 500 Imermal

System Logs

The System Logs page displays list of all schedule log files and log contents. Each
schedule has its own log file enabling easy access for the user to view the execution logs
and other information from the log files for diagnosing and troubleshooting issues.

The list of log files are sorted by last modified time of file with most recently modified
file first.

48 Job Orchestration and Scheduler Implementation Guide

Scheduler Security Considerations

ORACLE Scheduler Cansole Vielcome, beiadmin
Waed Aug 31 05:52 PDT 2016

Schedule Summary Manage Schedules Schedule Executions [EEEIEL T TR

Scheduler Log Files
~|

Log File Name Size (in KB} Last Modified

stheduler-delaul log M216 Wed Aug 31 050124 POT 2016
CodeDetail Fnd_From RMS_Schedule! log 648 TE Wed Aug 31 050005 PDT 2016
Merchtier_Fnd_From_RMS_Scheduie 1og 5939 Wed Aug 31 04:11:55 PDT 2016
PartOegUinit_Frd_From_RMS_Schedule log 4513 Wed Aug 31 04 11 55 PDT 2016
UomClass_Fnd_From RMS_Schedube log 2326 Wed Aug 31 0411 55 PDT 216
HSupCtry_Fnd_From_RMS_Sehedule iog 1611 Wed Aug 31 0411°55 POT 246
Packilem_Fnd_From_RMS_Sthedule iog 5198 Wed Aug 31 0411:55 PDT 26
UdaltemLav_Fra_From_RMS_Schedule log 2335 Wed Aug 31 0411°55 PDT 246

RepitemLoc_Frd_From_AMS_Schedule log 6656 Wed Aug 31 04:11:55 PDT 2016 |

Log Content
Th 1.0efoult (self-tuning)'] IHEO C eTizerBean - The achedule |

Scheduler Security Considerations

Scheduler Security

Scheduler application uses basic authentication to authenticate users and allow access to
the requested resources based on authorization. Only valid users can access the
Scheduler Console and the REST resources. Scheduler accesses BDI process flows using
basic authentication.

Users need to belong to one of these roles:

* Admin (assigned to BdiSchedulerAdminGroup in WebLogic Server)

= Operator (assigned to BdiSchedulerOperatorGroup in WebLogic Server)
= Monitor (assigned to BdiSchedulerMonitorGroup in WebLogic Server)

Only authorized users of specific role are allowed to access certain functionalities in the
Scheduler Console.
Users of Admin role have access to all the functions in Scheduler, users of Operator role

have limited authorizations to use only certain functions, and users of Monitor role only
have view /read-only access to Scheduler Console.

Function Admin Role Operator Role Monitor Role
View and search Yes Yes Yes
Create schedule Yes No No
Edit schedule Yes No No
Delete schedule Yes No No
Manual run schedule Yes Yes No
Disable schedule Yes Yes No
Enable schedule Yes Yes No

Scheduler 49

Scheduler Operational Considerations

Scheduler Operational Considerations

Users Roles for Monitoring and Administration

Scheduler application is secured with role based security authorization. It is
recommended to use separate users for Monitor, Operator and Admin roles.

Monitoring Schedules

Schedules and executions can be effectively monitored using Scheduler Console. The
console provides detailed action execution log and log files for each of the schedules that
can be used to verify the runtime executions of schedules and related information.

Schedule Action Execution Log

Each schedule execution contains ‘Schedule Action Execution Log’ that provides
descriptive information on the scheduled run or manual run of the schedule. The
Schedule Action Execution Log provides information as follows.

<SCHEDULED or MANUAL> RUN: Action triggered at: <Date and time>

Action Type: <ASYNC or SYNC>

Action Status: <TRIGGERED or STARTED or COMPLETED or FAILED>

Action Response: <The response string as returned by the schedule action dsl, or
the error message in case of an exception>

For example, for a successful execution of schedule ItemHdr_Fnd_From_RMS_Schedule
at the scheduled frequency, and action that triggers the process flow
ItemHdr_Fnd_ProcessFlow_From_RMS, the Schedule Action Execution Log will be:

SCHEDULED RUN: Action triggered at: Wed Jul 27 12:00:01 EDT 2016

Action Type: ASYNC

Action Status: TRIGGERED

Action Response: {“'executionld:"ItemHdr_Fnd_ProcessFlow_From RMS#0d3d656d-041a-
4068-8daf-8d17eelad899", "processName' :"'ItemHdr_Fnd_ProcessFlow_From RMS''}

In case of an exception (say, connection error when invoking process flow), the action
execution log will be like:

SCHEDULED RUN: Action triggered at: Sat Aug 06 00:40:00 EDT 2016

Action Type: ASYNC

Action Status: FAILED

Action Response: Exception: java.net.ConnectException: Tried all: "1" addresses,
but could not connect over HTTP to server: java.net.ConnectException: Connection
refused

Check the logs for more details.

The above action execution log examples indicate async actions. For sync actions, the the
action execution log also shows when the schedule action started and when it completed,
which is particularly useful for a long running action for which the Scheduler waits for
the response until completion. For example,

SCHEDULED RUN: Action execution started at: Wed Aug 03 12:00:00 EDT 2016

Action Type: SYNC

Action execution ended at: Wed Aug 03 12:22:10 EDT 2016

Action Status: COMPLETED
Action Response: Batch process completed.

Note: The Action Response shows the value that the
schedule action dsl finally returns after completion.

50 Job Orchestration and Scheduler Implementation Guide

Scheduler Customization

Scheduler Log Files

Each schedule has its own log file. For example, a schedule named
Store_Fnd_From_RMS_Schedule will have its log file named
Store_Fnd_From_RMS_Schedule.log.

The log file contains detailed information on schedule executions which can be scheduled
runs or manual runs, logs of actions such as disabling and enabling the schedule, action
log on schedule updates such as change in schedule frequency, and in case of any
exceptions, the exception stack trace.

Users can use the following keywords to search for specific information in the schedule
log file.

Keyword Description

Scheduleld The primary key Id of schedule

ScheduleName The schedule name

ScheduleExecutionld The execution Id of schedule run instance

Action Execution Begin Indicates the start of the log when schedule
action begins.

Action Execution End Indicates the end of the log when schedule
action ends. The log of the schedule action
execution can be found between the two strings:
***Schedule Run :

Action Execution Begin*** and ***Schedule Run
: Action Execution End***

For manual run, it will be **Manual Run :

Action Execution Begin*** and ***Manual Run :
Action Execution End***

Action execution exception The detailed exception message and stacktrace
will be shown following this string, when an
exception has occurred in schedule action
execution.

Maintaining Historical Schedule Executions

As the schedules run, schedule execution records are stored in the
BDI_SCHEDULE_EXECUTION table.

This table will grow larger as the number of schedule executions increase. Hence it is
recommended to periodically purge historical schedule executions from the table that are
older and no longer necessary, and only retain recent schedule executions of a particular
period, say for the last one month to now. This will help keep the table size within certain
limit and prevent database growth.

Scheduler Customization
Seed Data Reload

The sql script containing the seed data schedule definitions is located in bdi-scheduler-
home/setup-data/dml folder.

During the initial deployment of Scheduler application, seed data schedules get loaded to
schedule definition table and the corresponding schedules are created.

Scheduler 51

Scheduler Customization

If the Scheduler application needs to be redeployed and the seed data schedules need to
be reloaded during the redeployment (that is, to reset the schedules to the initial state as
per seed data), set the LOADSEEDDATA column in BDI_SYSTEM_OPTIONS table to
TRUE, and undeploy and redeploy the application.

Note: The above redeployment procedure will reset the
current schedule definitions (that is, existing schedules and
any changes will be deleted) and the schedules will be
recreated as per seed data definitions. Use this option with
caution and only when absolutely necessary.

Customizing Seed Data Schedules

By default all BDI seed data schedules are scheduled to run daily starting at midnight
(each schedule running with a gap of 5 minutes). The User can edit the seed data and add
new schedules to be loaded during deployment, by updating the seed data sql script and
adding corresponding schedule action scripts in the bdi-scheduler-home install directory,
before starting the installation.

Seed data sql file: bdi-scheduler-home/setup-data/dml/seed-data.sql
Schedule Action dsl files: bdi-scheduler-home/setup-data/dsl

An insert statement for a schedule seed data definition will look like below (SQL for
Oracle database):

INSERT INTO BDI_SCHEDULE DEFINITION (schedule_id, schedule_name, schedule_group,
schedule_description, schedule_status, schedule_start datetime, schedule_type,
schedule_frequency, schedule_notification, schedule notification_email,
schedule_action_type, schedule_action_definition) VALUES (7,

" InvAvailStore_Tx_From RMS Schedule®, "Inventory®, “Schedule created from seed
data. This schedule calls process flow: InvAvailStore_Tx ProcessFlow_From RMS.*",
"ACTIVE", TIMESTAMP "2016-03-12 00:30:00", "SIMPLE", "DAILY",
"ON_SUCCESS,ON_ERROR", “user@example®, "ASYNC",

" InvAvai lStore_Tx_From RMS Schedule_Action.sch®)

Note the following when adding or editing schedule
definitions in seed data to be loaded at application startup.
All these fields (as shown in the sql statement above) are
required fields to create a schedule at startup.

= schedule_id should be a unique number for each schedule.
= schedule_name should be unique.
= schedule_status needs to be “ACTIVE’ for schedule to be created and active.

= schedule_type should be ‘SIMPLE’ with any of the schedule_frequency values
mentioned above. Advanced schedule (calendar schedules with complex cron
expression) is not supported through seed data during deployment.

= gchedule_start_datetime:

Need to be in the format yyyy-mm-dd hh:mm:ss

For example, 2016-01-01 00:00:00, 2016-01-01 18:30:00
= schedule_frequency:

Valid values are: DAILY, HOURLY, WEEKLY, MONTHLY, WEEKDAY, WEEKEND,
SATURDAY, SUNDAY, FIRSTDAYOFMONTH, LASTDAYOFMONTH, ONCE

= gschedule_notification:

Valid values are: ON_START, ON_SUCCESS, ON_ERROR (separate multiple values
by comma)

52 Job Orchestration and Scheduler Implementation Guide

Scheduler Customization

= gchedule_email:

Valid email-id for notification (separate multiple emails by comma). Email is
required if schedule_notification is specified.

= schedule_action_type:
Valid values are (based on the action specified): "ASYNC’ or ‘SYNC’

= schedule_action_definition in seed data refers to the name of the corresponding
schedule action dsl file (this will get loaded at startup).

Each schedule should have corresponding schedule action dsl script defined. This
will be the action that gets executed when the schedule runs.

To load the schedule action dsl during deployment, add the schedule action dsl file
under bdi-scheduler-home/setup-data/dsl with file name convention: <Schedule
Name>_Action.sch

For example for adding a new schedule named Schedule_1, add schedule action dsl script
Schedule_1_Action.sch. During deployment, Scheduler will create Schedule_1 and update
the schedule definition with the action script from the corresponding file
Schedule_1_Action.sch.

Customizing Schedule Actions

The seed data schedules in Scheduler are the schedules that call the JOS process flows
provided out-of-the-box. The Schedule Actions define the REST calls to the JOS process
flows.

In an enterprise implementation, there will be requirements to schedule batch processes,
any recurring jobs or activities that are not BDI process flows. There can also be existing
batch processes or services that need to be scheduled.

The Scheduler can be used for such scheduling requirements by defining appropriate
Schedule Action to invoke the services.

Scheduler can be used to schedule RESTful services and as the Schedule Action is a DSL
based on Groovy, valid Groovy or Java code can also be used within the action part that
will be executed by the Scheduler based on the defined schedule.

The syntax for Schedule Action is as simple as follows.

action {
//your implementation goes here
}

The following Schedule Action syntax specifies how a REST service can be called from
Scheduler (assuming the REST resource does not require any authentication). The
response from the REST service will be treated as string.

action {
(POST[<your REST service URL here>]) as String

This is a simple approach for scheduling existing and new services that can be exposed as
REST services.

The Schedule Action syntax to call a REST service with authentication and with base
URL configured in System Options will be like below.

action {

POST[externalVariables._myRESTServiceBaseUrl +

"'"/resources/myRESTresource'] externalVariables.myRESTServiceBaseUrlUserAlias) as
String

}

Scheduler 53

Scheduler Troubleshooting

The externalVariables is the name of the variable used internally by the Scheduler to access
system options parameters. Any parameters (key-values) configured in System Options
can be accessed using the notation externalVariables.<my-system-option-parameter>

Admin users can utilize System Setting RESTful service to add or update system options
parameters, and setting up credentials (stored in wallet) for any authentication to be used
by the application. Refer Appendix D for details on the System Setting REST resources.

In the above example, user can add system option parameters named
‘myRESTServiceBaseUrl” with the REST resource base url value (for example,

http:/ /<myserverhost>:<port>/myapp) and ‘myRESTServiceBaseUrlUserAlias” which
will be the alias name to be used for authentication and the value of this parameter
should be GET_FROM_WALLET:GET_FROM_WALLET to indicate that the
corresponding credentials for the alias need to be obtained from the wallet during
runtime by the application.

Scheduler Troubleshooting

Any failure in schedule execution can be analysed in Scheduler application by checking
the Scheduler log files for the corresponding schedule.

If a schedule execution is ‘FAILED’ due to an exception response from process flow, then
the details of corresponding process flow execution instance, the exception details and
any stack trace can be viewed in the corresponding process flow logs using Process Flow
Admin console for further troubleshooting.

Note: that the schedule execution where JOS process flow is
called is only a trigger for the process flow execution, hence
the actual execution of process flow and the status and logs
thereof can only be viewed in JOS Process Flow Admin
console.

Scheduler Known issues

Scheduler Console provides calendar widget for datetime fields that is currently
supported only by Chrome browser. Hence it is recommended to use the latest version of
Chrome browser to access the Scheduler Console.

If any other browser is used that does not support the calendar widget for the datetime
input, the datetime fields may appear as textbox. Users can enter the datetime input as
text, but the value should be in the format of ‘yyyy-MM-ddTHH:mm’, for example, 2016-
01-01T20:00. There is no loss of functionality due to this limitation however.

54 Job Orchestration and Scheduler Implementation Guide

7

Use Cases

How do | create a batch job in Job Admin?
Download “JosJobAdmin16.0.0ForAll16.x.xApps_eng_ga.zip” and unzip the file.

2. Create job XML files using Java Batch specification. See the sample Job XML below.
3. Copy job XML files to “jos-job-home/setup-data/META-INF /batch-jobs” folder.
4. Copy jar file that contains code related to jobs in “jos-job-home/lib” folder.
5. Run the deployer script in “jos-job-home /bin” folder.
Sample Job XML

Below is sample Job XML that runs “Is” shell command.

<job id=""ShellCommandRunnerBatchlet” xmlns="http://xmlns.jcp.org/xml/ns/javaece"
version="1.0"">
<step id="shellCmd"">
<batchlet ref="ShellCommandRunnerBatchlet''>
<properties>
<I-- externalCommand format - command paraml .. paramN
parameters can be static or dynamic
if a parameter is dynamic, then use #SysOpt.paramName.
paramName should be setup in BDI_SYSTEM OPTIONS table
-—>
<property name="'externalCommand" value="ls"/>
<I-- externalCommandWorkingDir is optional -->
<property name="'externalCommandWorkingDir' value="_""/>
</properties>
</batchlet>
<end on="‘COMPLETE"/>
</step>
</job>

How do | pass job parameters to a shell script invoked by job?

Job parameters can be passed to a shell script from the job using the following
syntax in the job.

#{jobParameters[“paraml’]}
paraml - Name of the parameter
Sample job that uses job parameters

<job id=""ShellCommandRunnerBatchlet xmlns="http://xmlns.jcp.org/xml/ns/javaece"
version="1.0"">
<step id="shellCmd"">
<batchlet ref="ShellCommandRunnerBatchlet'">
<properties>
<property name="'externalCommand" value="ls
#{jobParameters[“paraml”]} #{jobParameters[“param2’]}''/>
<I-- externalCommandWorkingDir is optional -->
<property name="'externalCommandWorkingDir" value="_""/>
</properties>
</batchlet>

Use Cases 55

How do | pass system options to a shell script invoked by job?

<end on=""COMPLETE"/>
</step>
</job>

If the following parameters are entered in Job Admin Ul during launching of the above
job, the below command will be run by the job.

Job Parameters: paraml=-a,param2=-I
Command executed: Is -a -l .

How do | pass system options to a shell script invoked by job?

System Options can be passed to a shell script from the job using the following syntax in
the job.

#SysOpt . paramName

Sample job that uses system options

<job id=""ShellCommandRunnerBatchlet” xmlns="http://xmlns.jcp.org/xml/ns/javaece"
version="1.0"">
<step id="shellCmd"">
<batchlet ref="ShellCommandRunnerBatchlet'">
<properties>
<property name="'externalCommand" value="Is"/>
<I-- externalCommandWorkingDir is optional -->
<property name="externalCommandWorkingDir" value="#SysOpt.dir''/>
</properties>
</batchlet>
<end on=""COMPLETE"/>
</step>
</job>

If the following system option is set in Job Admin Ul, the below command will be run by
the job.
System Option: dir=/home/batch

Command executed in the working directory “/home /batch”.

How do | pass system properties to a shell script invoked by job?

Java system properties can be passed to a shell script from the job using the following
syntax in the job.

#{systemProperties[“propl’]}
Sample job that uses system property

<job id=""ShellCommandRunnerBatchlet” xmlns="http://xmlns.jcp.org/xml/ns/javaee"
version="1.0"">
<step id="shellCmd"">
<batchlet ref="ShellCommandRunnerBatchlet''>
<properties>
<property name="'externalCommand" value="ls"/>
<I-- externalCommandWorkingDir is optional -->
<property name="externalCommandWorkingDir"
value="#{systemProperties|[“batchDir>]}"/>
</properties>
</batchlet>
<end on="‘COMPLETE"/>
</step>
</job>

56 Job Orchestration and Scheduler Implementation Guide

How do | chain multiple jobs in a single flow?

If the following system property is set in the JVM for Job Admin, the below command
will be run by the job.

System Property: -DbatchDir=/home/batch
Command executed in the working directory “/home /batch”.

How do | chain multiple jobs in a single flow?

For running multiple jobs need to run in sequence, create a DSL to chain the jobs.

Sample Process Flow

The below process flow runs two jobs, “jobA” and “jobB” in sequence.The activity
“AbcActivty” starts jobA by calling a REST endpoint in Job Admin. The activity
“AbcStatusActivity” calls a REST endpoint in Job Admin to check the status of the
“jobA”. It waits until the job is complete or failed. This is a standard pattern for running a
batch job. After “jobA” is complete, process flow engine runs the “jobB”.

process {

name '‘AbcProcess’
var ([a:"b", c:"'d", e: 5]

begin{
action{
println "$activityName Load variables"
println "Access externalVariables=$externalVariables"
return "‘okay"
}
on "‘okay' moveTo "AbcActivity"
}
activity{
name “AbcActivity"
action{

startOrRestartJob(externalVariables[*jobAdminUrl*7], " JobA™,
externalVariables["'jobAdminUrlUserAlias'])
“'okay"*
}

on “‘okay' moveTo '‘AbcStatusActivity"
on "‘error' moveTo “ErrorActivity"

}
activity{
name "AbcStatusActivity"
action{

waitForJobCompletedOrFai led(**AbcActivity”,externalVariables[' jobAdminUrl'] +
""/resources/batch/jobs/JobA/"" + processVariables['jobExecutionld™],
externalVariables["'jobAdminUrlUserAlias'])

"okay"*
}
on "‘okay' moveTo "DefActivity"
}
activity{
name "DefActivity"
Action{

startOrRestartJob(externalVariables['jobAdminBaseUrl'"], " JobB",
externalVariables["'jobAdminUrlUserAlias'])
"'okay""

}

on "'‘okay" moveTo '‘DefStatusActivity"

Use Cases 57

How do | create split flows?

activity{
name "‘DefStatusActivity"
action{

waitForJobCompletedOrFai led("'DefActivity",externalVariables[" jobAdminUrl'] +
*'"/resources/batch/jobs/JobB/** + processVariables[''jobExecutionld'],
externalVariables["'jobAdminUrlUserAlias'])

“'okay"*
}
on “‘okay' moveTo “‘end"
}
activity{
name "ErrorActivity"
action{
println "$activityName This is error activity"
return "‘okay"
}
on “‘okay' moveTo *‘end"
}
end{
action{
println ""Got to end"
return “COMPLETED"
}
}
}

How do | create split flows?

The main flow needs to fork other flows. Use “POST” method to start a process flow from
another process flow.

Split Flows

1

I

: I

I Activity A Activity B H Activity G J :

! 1
L}

. ————— 8 - . £
l—smrt Subflow 1 Start Subflow Zj

(Process Flow — Subflow 1 “} ‘Process Flow — Subflow 2 1

i | 1

i I | !

: : : I

L y l :

Sample Split Flow

In this sample flow, the activity “GhiProcessActivity” posts a request to process flow
application to start a new process flow “GhiProcess” and the main flow continues with
rest of the activities. The sub flow runs independently of the main flow.

58 Job Orchestration and Scheduler Implementation Guide

How do | create split flows?

Main Flow

process {
name '‘DefProcess™

begin{
action{

on "‘okay' moveTo "‘GhiProcessActivity"

}

activity{
name "‘GhiProcessActivity"
action {
(POST[externalVariables.processFlowAdminBaseUrl +
"'/resources/batch/processes/operator/ProcessGhi’"]
T externalVariables.processFlowAdminBaseUrlUserAlias)

L] lokayl L]
¥ o
on "'‘okay' moveTo "DefActivity"
}
activity{
name "'DefActivity"
action{
L] lokayl L]
on "‘okay' moveTo "‘end"
}
end{
action{
return "COMPLETED™
}
}
}
Sub Flow
process {

name "‘GhiProcess"

begin{
action{
}
on “‘okay' moveTo "‘GhiActivity"
}
activity{
name “‘GhiActivity"
action{
//do something here
on "‘okay' moveTo "‘end"
}
end{
action{
return "COMPLETED"
}
}

Use Cases 59

How do | create split and join flows?

}

How do | create split and join flows?

Process flow “Abc” starts process flow “Def” and “Xyz”. Process flow “Abc” has to wait
until “Def” and “Xyz” process flows are complete. The activity “AbcActivity” waits until
“DefProcess” and “XyzProcess” are complete. Use
waitForProcessInstancesToReachStatus” method to wait for other flows to complete.

Split And Join Flows

{|
| I
: Activity C |
i 1
! Actlvity A Aﬂ""g—{ Wiait for subflowi & subfiow?] I
1

\

'Process Flow — Subflow 1 'Process Flow — Subflow 2

i) |
i] |
i] |
: Activity D Activity E | : Activity F Activity G
1 | I

A" 4 A"

—_—— - ER————————————————————

Sample Split and Join Flow

process {
name '‘AbcProcess’

begin{

action{

“'okay"*

}

on “‘okay' moveTo '‘DefAndXyzActivity"
}
activity{

name "‘DefAndXyzActivity"

action {

def defexecution = ((POST[externalVariables.processFlowAdminBaseUrl +

'/resources/batch/processes/operator/ProcessDef 7]

J externalVariables.processFlowAdminBaseUrlUserAlias) as

ProcessExecutionldsVo.ProcessExecutionldVo)

processVariables|[“processDefExecution”] = defExecution.executionld

def xyzExecution = ((POST[externalVariables.processFlowAdminBaseUrl +

"'/resources/batch/processes/operator/ProcessXyz'"]

J externalVariables.processFlowAdminBaseUrlUserAlias) as

ProcessExecutionldsVo.ProcessExecutionldvo)

processVariables|[“processXyzExecution”] = xyzExecution.executionld
"'okay""

}
on "'‘okay' moveTo "AbcActivity"
}

activity{

60 Job Orchestration and Scheduler Implementation Guide

How do | create split and join flows?

name "AbcActivity"
Action{

waitForProcesslInstancesToReachStatus([processVariables| “processDefExecution’],
processVariables[“processXyzExecution”]], PROCESS COMPLETED, LOGICAL_AND)

“'okay"’
}
on “‘okay' moveTo “‘end"
}
end{
action{
println "Got to end"
return ""COMPLETED"
}
}
}

Def Process Flow

process{
name '‘DefProcess

begin{

action{

}

on “‘okay' moveTo "‘defActivity"

}
activity{

name “‘defActivity"

action{

//do something here

}
on "okay' moveTo "‘end"

}
end{

action{

""COMPLETE”

}

}

}

Xyz Process Flow

process{
name ‘‘XyzProcess''

begin{
action{

}
on "'‘okay' moveTo "‘XyzActivity"

}

activity{
name '‘xyzActivity"

action{
//do something here

Use Cases 61

How do | create a join flow with other flows?

}on "okay' moveTo "‘end"

¥
end{
action{
""COMPLETE”
}
¥

}

How do | create a join flow with other flows?

Process flow “Def” and Process flow “Xyz” run independently. Process flow “Abc” has
to wait until process “Def” and “Xyz” are complete. Use
“waitForProcessNamesToReachStatus” to wait for other processes to complete.

Join Flows

—_———— - —

'Process Flow 1

i |
1 1
1 1
| |

Activity G
Wait for flow 182

Sample Join Flow

process {
name "‘AbcProcess"

begin{

action{

¥
on "okay' moveTo "‘AbcActivity"

¥

activity{
name "AbcActivity"
action{

waitForProcessNamesToReachStatus([“DefProcess”:2, “XyzProcess’:2],
now() .minusDays(1), PROCESS COMPLETED, LOGICAL_AND, LAST_EXECUTION_STATUS)
L1} okayl L]

on "okay' moveTo "‘end"

}

end{
action{

62 Job Orchestration and Scheduler Implementation Guide

How do | share data between process flows?

return ""COMPLETED"

}
}

How do | share data between process flows?

Process flow “Abc” needs to share data with process flow “Def”.
Use “persistGlobalUserData” and “findGlobalUserData” APIs to share information.

Sample Flow that shares information with other flows

process {
name '‘AbcProcess"
begin{
action{
}
on "‘okay' moveTo "AbcActivity"
}
activity{
name “'AbcActivity"
action{

// Persist date as String

persistGlobalUserData(“workDayStart”, now().minusDays(1).toString(Q)

“'okay"*
}
on “‘okay' moveTo “‘end"
}
end{
action{
return ""COMPLETED"
}
}
}
process {
name '‘DefProcess"
begin{
action{
on "‘okay' moveTo "‘DefActivity"
}
activity{
name "DefActivity"
action{

//fetch the date from db

def workDayStartString = findGlobalUserData(‘'workDayStart'")
LocalDateTime workDayStartDateObject = LocalDateTime.parse(workDayStartString)
log.debug "WorkDayStart Global data asString(${workDayStartString}) and

aslLocalDateTime(${workDayStartDateObject})""

“'okay"’
}
on "‘okay' moveTo "‘end"
}
end{
action{
return ""COMPLETED"
}
}

Use Cases 63

How do | create a schedule in Scheduler?

How do | create a schedule in Scheduler?

1. Download “JosScheduler16.0.0ForAll16.x.xApps_eng_ga.zip” and unzip the file.

2. Setup the schedule for the above created process through seed data or UL See the
sample seed data below.

3. Create DSL file for action. DSL is groovy based and groovy or java code can be used
in “Action” block. See the sample DSL below.
Copy DSL file to “jos-scheduler-home/setup-data/dsl” folder.

Run the deployer script from “jos-scheduler-home/bin” folder.

Sample seed data to create schedule

INSERT INTO BDI_SCHEDULE DEFINITION (schedule_id, schedule _name, schedule_group,
schedule_description, schedule_status, schedule_start datetime, schedule_type,
schedule_frequency, schedule_notification, schedule_notification_email,
schedule_action_type, schedule_action_definition) VALUES (1, "Schedulel-,
"Schedules®, "Schedule created from seed data. This schedule calls process flow:
AbcProcess.", "ACTIVE", TIMESTAMP "2016-11-22 00:00:00", "SIMPLE", "DAILY",
"ON_SUCCESS,ON_ERROR", "admin@example.com®, "ASYNC", “Abc.sch®)

Here are important fields in seed data that need to be considered for the schedule being
created.

schedule_type - SIMPLE. if advanced scheduling is needed, it needs to be created using
Scheduler Ul

schedule_start_datetime - Specify the date and time when to start the schedule, for
example, 2016-11-22 10:20:00'

schedule _frequency - Valid values are: DAILY, HOURLY, WEEKLY, MONTHLY,
WEEKDAY, WEEKEND, SATURDAY, SUNDAY, FIRSTDAYOFMONTH,
LASTDAYOFMONTH, ONCE

schedule_action_type - ASYNC (asynchronous) or SYNC (synchronous)
schedule_action_definition - Name of the schedule action DSL file

Schedule Action DSL

Each schedule has corresponding schedule action DSL. This will be the action that gets
executed when schedule runs.

Sample Action DSL

The following schedule action starts “AbcProcess” flow by sending a POST request to
Process Flow.

action {

(POST[externalVariables.processFlowAdminBaseUrl +
" /resources/batch/processes/operator / AbcProcess"]externalVariables.processFlowAd
minBaseUrlUserAlias) as String

64 Job Orchestration and Scheduler Implementation Guide

8
Security

RESTful Services

RESTful services in Scheduler, Process Flow, and Job Admin are secured with SSL and
basic authentication. Security credentials are stored in a wallet file during the installation
of these components. The following information is stored in BDI_SYSTEM_OPTIONS
table during the installation process.

baseUrl - URL of the application (Scheduler/Process Flow /Job Admin)
baseUrlUserAlias - Location of the credentials

Sample seed data created during installation

insert into BDI_SYSTEM OPTIONS VALUES("jobAdminBaseUrl",
"com.oracle.retail. integration_jos-batch-job-admin war_16.0.0",
"http://1ocalhost:7001/batch-job-admin®)

insert into BDI_SYSTEM OPTIONS VALUES("jobAdminBaseUrlUserAlias”,
"com.oracle.retail. integration_jos-batch-job-admin war_16.0.0",
GET_FROM_WALLET:GET_FROM_WALLET™)

The information in BDI_ SYSTEM_OPTIONS table can be accessed through
“externalVariables” in the DSL. The APIs that access REST endpoints need “baseUr]l” and
“baseUrlUserAlias” for authentication.

Security 65

9

Pre-Implementation Considerations
Thread Pool Size in WebLogic

If lot of concurrent schedules/process flows/jobs are going to run, increase the thread
pool size in WebLogic. This value can be changed for a managed server from WebLogic
Admin Console.

Servers -> Server Name -> Tuning -> Advanced -> Self Tuning Thread Maximum Pool
Size

Database Connection Pool Size in WebLogic

If lot of concurrent jobs are going to run, increase the maximum capacity of the
connection pool for data sources that are associated with the jobs. The default value is 15.
This value can be changed from WebLogic Admin Console.

Services -> Data Sources -> DataSource -> Connection Pool -> Maximum

Capacity

Pre-Implementation Considerations 67

10

High Availability Considerations
High Availability

Modern business application requirements are classified by the abilities that the system
must provide. This list of abilities such as availability, scalability, reliability, scalability,

audit ability, recoverability, portability, manageability, and maintainability determine
the success or failure of a business.

With a clustered system many of these business requirement abilities gets addressed
without having to do lots of development work within the business application.
Clustering directly addresses availability, scalability, recoverability requirements which
are very attractive to a business. In reality though it is a tradeoff, clustered system
increases complexity, is normally more difficult to manage and secure, so one should
evaluate the pros and cons before deciding to use clustering.

Oracle provides many clustering solutions and options; those relevant to JOS are Oracle
database cluster (RAC) and WebLogic Server clusters.

WebLogic Server Cluster Concepts

A WebLogic Server cluster consists of multiple WebLogic Server managed server
instances running simultaneously and working together to provide increased scalability
and reliability. A cluster appears to clients to be a single WebLogic Server instance. The
server instances that constitute a cluster can run on the same machine, or be located on
different machines. You can increase a cluster's capacity by adding additional server
instances to the cluster on an existing machine, or you can add machines to the cluster to
host the incremental server instances. Each server instance in a cluster must run the same
version of WebLogic Server.

In an active-passive configuration, the passive components are only used when the active
component fails. Active-passive solutions deploy an active instance that handles requests
and a passive instance that is on standby. In addition, a heartbeat mechanism is usually
set up between these two instances together with a hardware cluster (such as Sun
Cluster, Veritas, RedHat Cluster Manager, and Oracle CRS) agent so that when the active
instance fails, the agent shuts down the active instance completely, brings up the passive
instance, and resumes application services.

In an active-active model all equivalent members are active and none are on standby. All
instances handle requests concurrently.

An active-active system generally provides higher transparency to consumers and has a
greater scalability than an active-passive system. On the other hand, the operational and
licensing costs of an active-passive model are lower than that of an active-active
deployment.

See the Oracle® Fusion Middleware Using Clusters for Oracle WebLogic Server
documentation for more information:

http:/ /download.oracle.com/docs/cd /E15523 01/web.1111/e13709/toc.htm.

Scaling JOS

JOS needs to be scaled horizontally to handle large number of concurrent jobs. Single
instances of Scheduler and Process Flow can be used since they are not resource

High Availability Considerations 69

http://download.oracle.com/docs/cd/E15523_01/web.1111/e13709/toc.htm

JOS on Cluster

intensive. Job Admin can be very resource intensive. To handle large number of
concurrent jobs, multiple instances of Job Admin can be used to distribute jobs.
WebLogic Server cluster that consists of multiple managed server instances provide
horizontal scalability for Job Admin.

JOS on Cluster

Logging

As recommended above, for scaling JOS for large number of jobs, JOS components
should be deployed to cluster. Following are some considerations to be taken into
account when deploying JOS on cluster.

Issue

The “System Logs” tab in Scheduler, Process Flow, and Job Admin Uls show only logs
from the server that Ul is connected to.

Solution
Use a common log directory for each of the JOS components.

JOS components use the following directory structure for creating log files.
$DOMAIN_HOME/logs/<server name>/<app name>

Example

$DOMAIN_HOME/ logs/serverl/com.oracle.retail. integration_jos-rms-job-

admin_war_16.0.21

$DOMAIN_HOME/ logs/server2/com.oracle._retail. integration_jos-rms-job-

admin_war_16.0.21

1. Create a common log directory (for example; /home/logs/jobadmin) for each JOS
application.

2. Create symbolic links to the common log directory for each server using the below
command from $DOMAIN_HOME/logs directory.

In -s /home/logs/jobadmin
serverl/com.oracle.retail.integration_jos-rms-job-admin war_16.0.21
In -s /home/logs/jobadmin
server2/com.oracle.retail.integration_jos-rms-job-admin war_16.0.21
3. If the directory $DOMAIN_HOME /logs/<server>/<app> already exists, it needs to
be deleted before symbolic link is created.

4. App needs to be restarted after symbolic link is created.

When weblogic managed servers are in different machines a shared network disk has to
be used.

Update Log Level

Issue

When log level is updated through UI or REST end point, it updates the log level only on
the server it is connected to.

Solution

Log level needs to be updated through the URL of all the nodes in the cluster using Ul or
REST endpoint.

Example

70 Job Orchestration and Scheduler Implementation Guide

JOS on Cluster

http://serverl:portl/jos-rms-batch-job-admin/system-setting/system-logs
http://server2:port2/jos-rms-batch-job-admin/system-setting/system-logs

Create/Update/Delete System Options

Issue

When system options are created /updated/deleted using Ul or REST end point, the
changes are reflected only on the server that client is connected to.

Solution

The reset-cache REST endpoint need to be invoked on the other nodes in the cluster for
that application in JOS.

Example
http://serverl:portl/jos-rms-batch-job-admin/system-setting/reset-cache

Create/Update/Delete System Credentials

Issue

When system credentials are created /updated/deleted using REST endpoint, the
credentials are created /updated/deleted only on the server that client is connected to.

Solution

The REST endpoint that creates/updates/deletes credentials need to be invoked on all
the nodes in the cluster for that application in JOS.

Example

http://serverl:portl/jos-rms-batch-job-admin/system-setting/system-credentials
http://server2:port2/jos-rms-batch-job-admin/system-setting/system-credentials

Scheduler Configuration Changes for Cluster

Cluster Job Scheduler Data Source
Specify the data source for schedule timers in the Admin Console
Login to Admin Console

Click Environment — Clusters

Click on the cluster name

Click Scheduling

Click Lock & Edit (For Production Mode only)

Select BatchInfraDataSource for the Data Source For Job Scheduler field
Save

© N o g ks~ w NPF

High Availability Considerations 71

about:blank

JOS on Cluster

WebLogic EJB JAR XML

1. Update the weblogic-ejb-jar.xml in WEB-INF folder of the bdi-scheduler-ui-
<version>.war in <jos-home>/dist folder with the contents shown (The entry in red is
the change from the existing contents of the file).

Instructions to update

cd dist

jar xf bdi-scheduler-ui-<version>.war WEB-INF/weblogic-ejb-jar.xml
Update the WEB-INF/weblogic-ejb-jar.xml with the contents below
jar uf bdi-scheduler-ui-<version>.war WEB-INF/weblogic-ejb-jar.xml
Delete dist/ WEB-INF folder

Deploy the scheduler application

<weblogic-ejb-jar xmlns="http://xmlns.oracle._con/weblogic/weblogic-ejb-jar"
xmIns:xsi="http://mw_w3.org/2001/XMLSchema- instance’">

© N o gk~ w DN

<security-role-assignment>
<role-name>AdminRole</role-name>
<principal-name>BdiSchedulerAdminGroup</principal-name>
</security-role-assignment>

<security-role-assignment>
<role-name>OperatorRole</role-name>
<principal-name>BdiSchedulerOperatorGroup</principal-name>
</security-role-assignment>

<security-role-assignment>
<role-name>MonitorRole</role-name>
<principal-name>BdiSchedulerMonitorGroup</principal-name>
</security-role-assignment>
<timer-implementation>Clustered</timer-implementation>
</weblogic-ejb-jar>

72 Job Orchestration and Scheduler Implementation Guide

11

Deployment Architecture

JOS and BDI deployment architecture for RMS

This diagram shows recommended deployment architecture for RMS that uses both JOS
and BDI. Here JOS and BDI use same batch schema as they are deployed in same
WebLogic domain. However they use different infrastructure schemas.

RMS JOS And BDI Deployment Architecture

RMS JOS Infra Schema

Job Infra Tables
Process Infra Tables
Scheduler Infra Tables

BDI
RMS App Schema 1

1
' RMS BDI PLSQL API

o)
.

| (" BDI Extractor Infra Schema

BDI Extractor Job Tables J‘

H BDI Interface Tables
|=—+—#{ BDI Data Control API Packages
' BDI Downloader Infra Tables

BDI Integration Schema W

JOS_JOB_SERVER

App Name:
Jos-rms-batch-job-admin

JOS_PROCESS_SERVER
. App Name:
bdi-process-flow
JOS_SCHEDULER_SERVER

App Name:
bdi-scheduler

BDI Managed Servers

(RMS Batch WebLogic Domain |

S rms-batch-job-admin

| BDI_EX_JOB_Server
) App Name:

WLS Services
JBatch Tables
Metadata Services
MDS Tables
Common Services
STB Tables
OPSS Services
OPSS Tables

[RMS WebLogic Domain

JOS Deployment Architecture

RMS App(ADF)

Rt

This diagram shows simple deployment architecture for JOS. In this architecture, JOS Job
Admin, JOS Process Flow, and JOS Scheduler are deployed in separate managed servers
in a WebLogic domain. This is the recommended architecture if batch jobs are simple and

not resource intensive.

Deployment Architecture 73

JOS Scalable Deployment Architecture

JOS Deployment Archi ure

WLS Services
JBatch Tables
Metadata Services
MDS Tables }
Common Services |
STB Tables
OPSS Services
OPSS Tables

JOS Scalable Deployment Architecture

This diagram shows scalable deployment architecture for JOS. In this architecture, Job
Admin is deployed in multiple managed servers in a cluster. Process Flow and Scheduler
are deployed in their own managed servers. This is the recommended architecture if
batch jobs are resource intensive. This architecture allows Job Admin to be scaled
horizontally and jobs can be distributed.

JOS_JOB_SERVER

App Name:
Jjos-rms-batch-job-admin

JOS Infra Schema
JOS_PROCESS_SERVER

Job Infra Tables
Process Infra Tables
Scheduler Infra Tables

App Name:
bdi-process-flow

JOS_SCHEDULER_SERVER

App Name:
bdi-scheduler

JOS Scalable Deployment Architecture

JOS_JOB_SERVER_1

App Name:
jos-rms-batch-job-admin

WLS Services
JBatch Tables
Metadata Services ||
MDS Tables
Common Services ':ji'
STB Tables d
OPSS Services i
OPSS Tables

JOS_JOB_SERVER_n

Job Infra Tables ¥ jos-rms-batch-job-admin

Process Infra Tables o -
Scheduler Infra Tables :

JOS_PROCESS_SERVER
App Name:
bdi-process-flow
JOS_SCHEDULER_SERVER

App Name:
bdi-scheduler

74 Job Orchestration and Scheduler Implementation Guide

12

Performance Considerations

CPU and Memory considerations

JOS App’s memory requirements are low, 1GB should be sufficient. If you are
running shell scripts from JOS you will have to make sure whatever memory is
needed by your scripts are available in the machine.

CPU depends on number of concurrent JOBs you plan to run. If you plan to run
many process flows concurrently you need to allocate at least that many threads to
WebLogic thread pool.

JavaBatch automatically throttles concurrent jobs based on how many threads are
available to the process.

Performance Considerations 75

A

Appendix A: Scheduler REST Endpoints

Scheduler provides RESTful services to retrieve information about schedules and to run

the scheduler manually.

The endpoint “discover” can be used to identify all endpoints provided by the Scheduler.

REST resource Method Description
/discover GET Lists all the available Scheduler REST resources
/batch/schedules GET Returns all the schedules in the application (including
active, inactive and disabled schedules)
/batch/schedules/active-schedules GET Returns all active schedules
/batch/schedules/{scheduleName} GET Returns the schedule definition of the specified schedule
/batch/schedules/upcoming- GET Returns the upcoming schedules from now to next
schedules/days/{days} number of {days} specified
/batch/schedules/upcoming-schedules GET Returns the upcoming schedules for the next 1 day from
now
/batch/schedules/executions/{scheduleName} GET Returns all the historical schedule executions of the
given schedule since the beginning
/batch/schedules/executions/past/days/{days} | GET Returns the historical schedule executions of the given
schedule for past number of {days}
/batch/schedules/executions/failed GET Returns all the failed executions for all the schedules
since the beginning
/batch/schedules/executions/today GET Returns today’s schedule executions starting from
midnight today (12:00 a.m.) to now
/batch/schedules/executions/today/completed | GET Returns today’s schedule executions that are either in
‘Triggered” status (for async actions) or in ‘Completed’
status (for sync actions), starting from midnight today
(12:00 a.m.) to now
/batch/schedules/executions/today/failed GET Returns today’s schedule executions that are in ‘Failed”
status, starting from midnight today (12:00 a.m.) to now
/batch/schedules/executions/past/days/{days} | GET Returns schedule executions for last n days
/batch/schedules/operator/run-schedule- POST Runs the specified schedule, that is, executes the

now /{scheduleName}

Schedule Action of the schedule and returns the
Schedule Execution detail response.

This is synchronous invocation, so client needs to wait
for the response.

Appendix A: Scheduler REST Endpoints 77

CPU and Memory considerations

B

Appendix B: Process Flow REST Endpoints

The endpoint “discover” can be used to identify all endpoints provided by Process Flow.

REST Resource

HTTP method

Description

/discover GET Lists all available endpoints

POST Start a new Process Flow execution
/batch/processes/operator/{process
Name}
/batch/processes/executions/{proces | GET List Process Executions for the process name
sName}
/batch/processes/executions GET List all process execution ids

GET List all process execution ids for the specified status
/batch/processes/executions/status/
{status}
/batch/processes/executions/time/{ | GET List all process execution ids for the specified time range
startTime}/{endTime}
/batch/processes/external-variables | GET List external variables
/batch/processes/external-variables | PUT Create external variables
/batch/processes/external-variables | POST Update external variables
/batch/processes/external- DELETE Delete external variable
variables/{key}

/batch/processes/currently-running- | GET List all the currently running process flows

processes
/batch/processes GET Get all the available process definitions
/batch/processes/{processName} GET Get process DSL for the specified process

/batch/processes/executions/{proces | GET Get Activity execution detail for the activity specified
sName}/{processExecutionld}/activiti

es/{activityExecutionId}

/batch/processes/executions/{proces | GET Get all the activities for the process flow execution
sName}/{processExecutionld}

/batch/processes/{processName}/act | GET Get all the activities for the process specified
ivities

/batch/processes/operator/{process | POST Restart a process execution instance
Name}/{processExecutionld}

/batch/processes/operator/{process | POST Sets the status of process to PROCESS_FAILED
Name} /resolve

/batch/processes/{processName}/{p | DELETE Stops running process

rocessExecutionld}

/batch/processes/executions DELETE Stops all running processes

78 Job Orchestration and Scheduler Implementation Guide

CPU and Memory considerations

REST Resource HTTP method

Description

/batch/processes/{processName}/act | POST
ivities/{activityName}

Sets skip, hold flags for activity. Query parameters that can be
passed with this end point - “skip”, “hold”,

voou

“actionExpiryDate”, “comments”.

/batch/processes/{processName}/act | GET
ivities/{activityName}

Returns dynamic configuration for activity

Appendix B: Process Flow REST Endpoints 79

C

Appendix C: Job Admin REST Endpoints

Batch service is a RESTful service that provides various endpoints to manage batch jobs
in Job Admin.The endpoint “discover” can be used to identify all endpoints provided by

Job Admin.

REST Resource

HTTP method

Description

/discover GET Lists all available endpoints in Job Admin
/batch/jobs GET Gets all available batch jobs
/batch/jobs/{jobName} GET Gets all instances for a job
/batch/jobs/{jobName}/executions | GET Gets all executions for a job
/batch/jobs/executions GET Gets all executions
/batch/jobs/currently-running-jobs | GET Gets currently running jobs
/batch/jobs/{jobName}/{jobInstanc | GET Gets job executions for a job instance
eld}/executions

/batch/jobs/{jobName}/{jobExecuti | GET Gets job instance and execution for a job execution id
onld}

/batch/jobs/{jobName} POST Starts a job asynchronously
/batch/jobs/executions/{jobExecuti [POST Restarts a stopped or failed job

onld}

/batch/jobs/executions DELETE Stops all running job executions
/batch/jobs/executions/{jobExecuti | DELETE Stops a job execution

onld}

/batch/jobs/executions/{jobExecuti [GET Gets execution steps with details
onld}

/batch/jobs/executions/{jobExecuti | GET Gets execution steps

onld}/steps

/batch/jobs/executions/{jobExecuti [GET Gets step details
onld}/steps/{stepExecutionld}

/batch/jobs /job-def-xml-files GET Gets all job xml files

Appendix C: Job Admin REST Endpoints 81

D

Appendix D: System Setting Service

System Setting service is a RESTful service available in all JOS components (Job Admin,
Process Flow and Scheduler) that provides endpoints to manage system option
parameters and credentials to be used by the JOS. The system options are stored in
BDI_SYSTEM_OPTIONS table.

REST Resource

HTTP method

Description

/system-setting /system-options GET Gets all system options from BDI_SYSTEM_OPTIONS
table

/system-setting /system-options PUT Creates a system option in BDI_SYSTEM_OPTIONS
table. Only admin user is allowed to perform this
operation.

/system-setting /system-options POST Updates a system option in BDI_SYSTEM_OPTIONS
table. Only admin user is allowed to perform this
operation.

/system-setting /system- DELETE Deletes a system option from BDI_SYSETM_OPTIONS

options/{key} table. Only admin user is allowed to perform this
operation.

/system-setting /system- GET Gets a system option from BDI_SYSTEM_OPTIONS

options/{key} table

/system-setting /system-logs GET Gets system logs

/system-setting /system-seed-data GET Gets system seed data file

/system-setting /system-seed- POST Resets system seed data after bounce

data/reset-after-bounce

/system-setting /system-seed- POST Resets system seed data now

data/reset-now

/system-setting /system-credentials | GET Gets system credentials. Only admin user is allowed to
perform this operation.

/system-setting /system-credentials | PUT Creates system credentials. Only admin user is
allowed to perform this operation.

/system-setting /system-credentials | POST Updates system credentials. Only admin user is
allowed to perform this operation.

/system-setting /system- DELETE Deletes system credentials. Only admin user is

credentials/ {key}

allowed to perform this operation.

Managing System Options using curl

Here are examples of curl commands to list/create/update/delete system options for
Process Flow. These commands can be run for Job Admin, and Scheduler as well.
Create/update/delete commands can only be run by administrator.

Appendix D: System Setting Service 83

Managing Credentials Using Curl

Create system option

This command creates “reimappJobAdminBaseUrlUserAlias” system option in Process
Flow.

curl —-user userld:password -i -X PUT -H "Content-Type:application/json"
http://server :port/bdi-process-fFlow/resources/system-setting/system-options

-d "{"key':"reimappJobAdminBaseUrlUserAlias™ , "value:"
GET_FROM_WALLET:GET_FROM_WALLET *}*

Update System Option

This command updates “reimappJobAdminBaseUrl” system option in Process Flow.

curl --user userld:password -i -X POST -H "‘Content-Type:application/json"
http://server:port/bdi-process-fFlow/resources/system-setting/system-options

-d "{"key":""reimappJobAdminBaseUrl" , "value':"http://server:port/reim-batch-job-
admin'}*”

Delete System Option

This command deletes “reimappJobAdminBaseUrl” system option from Process Flow.

curl --user userld:password -i -X DELETE -H "Content-Type:application/json™
http://server:port/bdi-process-fFlow/resources/system-setting/system-options
-d "{"key':""reimappJobAdminBaseUrl'}"

Reset System Options Cache
This command resets cache for system options and it needs to be run on all the nodes to
refresh cache.

curl --user userld:password -i -X POST http://server:port/bdi-process-
Tlow/resources/system-setting/reset-cache

List System Options

This command lists all system options from Process Flow.

curl —-user userld:password -i -X GET -H "‘Content-Type:application/json"
http://server :port/bdi-process-Flow/resources/system-setting/system-options

Managing Credentials Using Curl

Here are examples of curl commands to list/create/update/delete credentials for Process
Flow. These commands can be run for Job Admin, and Scheduler as well.
Create/update/delete commands can only be run by administrator.

Create Credential

This command creates a credential in Process Flow.

curl --user userld:password -i -X PUT -H "‘Content-Type:application/json’
http://server:port/bdi-process-flow/resources/system-setting/system-credentials -d
"{""userAlias":" reimappJobAdminBaseUrlUserAlias', "userName':''reimjobadmin™ ,
“'userPassword':"*xyzxyz""}"

Update Credential

This command updates a credential in Process Flow.

curl —-user userld:password -i -X POST -H "‘Content-Type:application/json™
http://server:port/bdi-process-fFlow/resources/system-setting/system-credentials -d
“{"userAlias":" reimappJobAdminBaseUrlUserAlias', "‘userName':''reimjobadmin™ ,
""userPassword":"'wwwoqqd' ;"

84 Job Orchestration and Scheduler Implementation Guide

about:blank
about:blank

Managing Credentials Using Curl

Delete Credential

This command deletes a credential from Process Flow.

curl --user userld:password -i -X GET -H "‘Content-Type:application/json’
http://server:port/bdi-process-fFlow/resources/system-setting/system-credentials -d
“{"'key"':""reimappJobAdminBaseUrl"}"

List Credentials

This command lists credentials from Process Flow.

curl —-user userld:password -i -X GET -H "‘Content-Type:application/json"
http://server:port/bdi-process-fFlow/resources/system-setting/system-credentials

Appendix D: System Setting Service 85

E
Appendix E: Scheduler Ul Screenshots

Schedule Summary

This is the home page that provides the overall summary of the scheduler runtime.

Note: today here indicates the duration from midnight to
now. It lists the future schedules that are expected to run in
the next 24 hours from now. It also lists the schedule
executions that have failed today (from midnight to now).

ORACLE Scheduler Console Vielcame, scheduleradmin

Wed Nov 30 15:34 CST 2016

S ITEG ARl Manags Schedules | Scheduls Exscutions | System Logs

Schedules and Executions

Total Active Schedules ‘Schedule Executions Today | Schedule Executions Successiul Today Schedule Executions Failed Today
7 o L] U

Upcoming Schedules {37)

Schedule Id Schedule Group Schedule Name Schedule Next Run Schedule Status

1 CodeDetnil CodeDeiad_Fnd_From_RAMS Schedule Tha Dec 01 00:00.00 GST 2016 ACTIVE

2 CossHead GodeHead_Fnd_From_AMS. Schedule Thu Dex 01 D0:05:00 GST 2016 AGTIVE

3 DelverySiat DeliverySial_Fnd_From_RMS_Schedide The Dec 01 00:10:00 GST 2016 ACTIVE

4 ot Det_Fnd_From_RMS_Schedule Thu Dec 01 00:15:00 CST 2016 ACTIVE

5 il DillGrp_Frd From RMS Schedule The Dec 01 00:20.00 CST 2018 ACTIVE

6 Firshaedae FinisharAndr_Fnd_From_RMS_Schaduls Thu Dac 01 D0:25:00 CST 2016 ACTIVE

7 Inwentary InvAvaiStore Tx From RMS Schedude Tha Dee 01 00:30:00 CST 2018 ACTIVE

8 Invantary InvAvaiWh_Tx_From_AMS_Scheduls Thu Dac 01 00:35:00 CST 2016 ACTIVE

] ftem HemHdr Frd_From_RMS_Schedule Tha Dec 01 00:40:00 CST 2016 ATTIVE
Schedule Execution Id Schedule Id Schedule Name Schedule Execution Datetime Schedule Action Execution Status Schedule Action Execution Log

Manage Schedules - Schedule Executions

Manage Schedules page displays list of all schedules and details of each schedule in
Schedule Detail view and corresponding schedule executions in Schedule Executions
view for the schedule.

Appendix E: Scheduler Ul Screenshots 87

Manage Schedules - Create Schedule

ORACLE Scheduler Console Wekome, scheduleradmin

| schedule Summary TR LU Bl Schedule Execulions | System Logs |

List of Schedules (37)

Wed Nov 30 15:43 C5T 2016

Q Filter | Schedule Name v | Schedules wih name ke i 1ale Creae Schedule
Schedule Id Schedule Name Schedule Group Schedule Start F Mext Run Schedule Stalus Schedule End
1 CodeDetail_Fnd_From_RMS_Schedule CodeDetail Sal Mar 12 00:00:00 CST 2018 Daily Thu Dec 01 00:00:00 CST 2016 Aclive Never
2 CodeMead_Frd_From_RMS_Schedule CodoHuad Sal Mar 12 00:05:00 CST 2018 Daily Thu Dec 01 D0:05.00 CST 2016 Active Never
3 DeliverySiot_Fnd_From_RMS_Schedule DeliverySiot Sat Mar 12 00:10:00 CST 2016 Daily Thu Dec 01 00:10:00 CST 2016 Active Newvar
4 Dit_Frnd_Fram RAMS Schadule Ditt Sat Mar 12 00:15:00 CST 2016 Daity Thu Dec 01 DD:15:00 CST 2016 Active Nevar
5 DifGrp_Fnd_From_RMS_Schedule Dt Sal Mar 12 00:20:00 CST 2016 Daily Thu Dec 01 00:20:00 CST 2018 Active Never
6 FinisherAddr_Frd_From_RMS_Schedule FinisherAddr Sat Mar 12 00:25:00 C5T 2016 Dally Thu Dec 01 00:25:00 CST 2015 Active Never
7 InvivailStore Tx From AMS_Schedule Inventory Sal Mar 12 00:30:00 CST 2018 Daily Thu Dec 01 D0:30:00 CST 2016 Aclve Never
8 InvAvaifWh_Tx_From_RMS_Schedule Irwentory Sat Mar 12 00:35:00 CST 2016 Daily Thu Dec 01 00:35:00 CST 2016 Active Newer
a8 hemHdr_Fnd_From_RMS_Schedute Item Sat Mar 12 00:40:00 CST 2016 Daily Thu Dec 01 00:40-:00 CST 2016 Active Nevar

W Id Name ion Datetime Schedule Action Execulion Status Schedule Action Execution Log

Manage Schedules - Create Schedule

The ‘Create Schedule’ option displays one page where user can enter and save all
required information to create a schedule.

Create Schedule

Basic Info Schedule Action

Sehedule Group: Mone - D async Sync
action { }

Schedule Name: New Schaduls 38

Schedule Description:

Frequency Hotification

When schedule execulion I Stats | Fails | | Triggered | Comgpleted
Schedule Stant Datetime: | 3016-12-02T10:23
Email
Schedule End Datetime: @ paver | On

Simple

Schedule paily »

=3 E3

Schedule Executions

From the Schedule Executions page user can view all available historical schedule
executions. The page will display schedule executions for the last one week by default.
User can use the search option to enter a different date range to fetch the corresponding
schedule executions.

88 Job Orchestration and Scheduler Implementation Guide

System Logs

OCRACLE’ Scheduler Console Weicome, seheduleradmin
Wed Now 30 15:43 CST 2018
COETEE i NI Schedule Executions

Schedule Executions From | 2016-11-23T15:43 To | 2016-11-30T15:43 Ga

[Na ScheduleExscutions Found]

Filter Schedule Name - Name liks this Qe

Schedule Execution ld Schedule id Schedule Name Schedule Execution Datetime Schedule Action Execulion Status Schedule Action Execulion Log

System Logs

The System Logs page displays list of all schedule log files and log contents. Each
schedule has its own log file enabling easy access for the user to view the execution logs

and other information from the log files for diagnosing and troubleshooting issues.

ORACLE' Scheduler Console Weicome, schedulerndmin
Wed Nov 30 15:44 CST 2016

Schedule Summary | Manage Schedules | Schedule Executions |JEVTIE T

Scheduler Log Files

Log File Name Slzs (in KB) Last Modified
FirssherAddr_Fnd_From_RMS_Schedule log n.e8 Wad Nov 30 15:34:27 C5T 2016
UdaltemDate_Fnd_From_AMS_Schedule log 0.88 Wed Nov 30 15:34:27 CST 2016
ItemSupplies_Frid_From_AMS_Schedule log 099 Wed Nov 30 15:34:27 CST 2016

CodeDetail Fnd From AMS Schedule log 098 Wed Nov 30 15:34:27 CST 2016
UamConversion_Fnd_From_RMS Schedule log 099 Wed Nov 30 15:34:27 CET 2018
Wh_Fnd_From_RMS_Schedule.log 0.5 Wed Nov 30 15:34:27 CST 2018
Relateditem_Fnd_From_RMS_Scheduis.log 812 Wed Nov B0 15:34:27 CST 2015
Pachitem_Fnd From_RMS_Schadule og 087 Wed Nov 30 15:34:27 GET 2018
BemSuppUom_Fnd_From_RAMS. Schedule log 0.58 Wed Nov 30 15:34:27 CST 2016

Log Centent

2016-11-30T15:34:27,316 | [STANDBY] ExecuteThread: °5' for queue: 'weblogic.kernel.Default [self-tuning)'] INFO SchedulerStartupServiceBean - Creating schedule: 6 -
FinisherAddr Frd_From RMS Schedule

2016-11-30T15:34:27,321 [[STANDBY] ExecuteThread: *5' for queue: ‘weblogic.kernel . Default [self-tuning)®] DEBUG CalendarScheduleTimerBean - Created daily schedule timer
2016-11-36T15:34:27 322 [[STANDEY] ExecuteThread: °5' for queve: ‘weblogic.kernel.befault [self-tuning)®] INFO CalendarScheduleTimerfean - Schedule created - Scheduleld: 6
Schedulename: Finisheraddr Fnd From fMs Schedule - Frequency: [haur in y syear=";tiner listart=sat Mar 12 B8:25:60 CST
2816; end=null]

2016-11-30T18:34:27,323 [[STANDEY] ExecuteThread: °S° for queve: ‘weblogic.kernel Default (self-tuning) "] INFO CalendarScheduleTimerfiean - Scheduled - Scheduleld: &
SchaduleName: FinisherAddr Fnd From RMS Schedule - Schedule First Run at: 2016-12-01T90:25:00.323-0600

Appendix E: Scheduler Ul Screenshots 89

F

Appendix F: Process Flow Ul Screenshots

Process Flow Live

Process Flow Live tab shows the details of the currently running processes. The first
section shows the summary of all processes running in the system. The next section
shows the list of all processes running since midnight. The last section shows the activity
details of the selected process.

ORACLE' Process Flow Admin Console

T L LUl Menage Process Flow

Total Processes Definitions
L

Process Flow Executions Since 00:00 Al

Hisiorical Process Flow Executions

Total Process Executions
50

Mansge Conligumations | System Legs

Process Flow Orchestrator Status Sumenary

Falled Executions | Suceesstul Executions

43 o

Weicome, processadmin

‘Wed Nov 30 11:58 EST 2016

Currently Running Proceasss

7

|

Wed Nov 30 09:58.06

Whadd: Fnd_ProcessFlow. From_RMS Wnadd: Fnd | From_ Dee3-483 ket
o 3 51
Sorahddr_ End_ProcessFlow From RMS SloreAddr_Frd ProcessFiow_From RMS-48712062.Toan 4019.616 508chddeasta 100 i‘;__":ﬂ?_“ ?
Fnd From_FMS Frd_ProcessFlom_From 90-<598-4TIb-a207 ModtaB0T2eg o0 oy 30 055114

SoreAddr_Fnd_ProcessFlow_From PMS

Pelatediiem_Frd_ProcessFiow_From_FlS

HemLoc_Fra_ProcessFiow From_AMS

Stormhdds_Frd_ProcessFlow_From_FMS-Zoedboad-fSe-4764-B01T-e5a52dc5e1

EST 2016

Wed Nov 30 05.44:59
EST 2016

Relatediiem Fnd_ProcessFiow From RMS-TB5b80r5-n256-4204- S50 Wed Nov 30 05:43:33
4B0edcT1c4TE

HemLoc_Frd ProcessFiow_From_AMS-0a1at307.6103-4704.8307 56T tacTed

EST 2018

Wed Nov 30 05:39:58
EST 2016

Process Flew Astivity Details for Execution |D: WhAddr Frd_ProcessFlow_From_AMS-632206e1-Deed-4d93-9016-2b146d18013e

Wed Nov 30 095808
EST 2018

Wed Nov 30 05:52°51
EST 2016

Wed Nov 30 05:51:50
EST 2018

Wed Nov 30 05:43:33
EST 2016

Wed Nov 30 05:39.58
EST 2016

PROCESS FAILED

o

PROCESS FAILED
Lol

PROCESS FAILED
o

5 FAILED

PROCESS _FAILED

Manage Process Flow - Process Flow Executions

Manage Process Flow tab allows to start a process flow, restart a failed process flow,
view/edit a process flow, list the executions instances of a process flow, and view /edit
the process flow configuration. A failed process flow instance can be restarted only if it is
the latest failed instance and there are no successful executions after that.

ORACLE Process Flow Admin Consale

Proceas Flow Live [TEITEIE S mg] Historkeal Process Flow Executions | Manage Configurations | Syatem Loga

AR Process Definitions.

Fracess Name

D#_Fnd_ProcessFiow_From RMS
DeGp_Fnd_ProcessFlow_From FMS
Invhwaitih_Tx ProcessFlow From RMS
temice_Frd_ProcessFlow_From_AMS
Bemimage_Frd_ProcessFiow_From_RMS
Hemboc_Fro_ProcessFiow_From_AMS

Merchbdar_Fnd_ProcessFlow_From RMS

Orghber_Fnd_ProcessFlow_From FES

FamilyGeoup Applcations

[oM
DG XM
i ovailih oM
e XM
Nemimage oM
Bemice M
MarchHaer M
Crghber XM

Flow Type

no-splt
no-split

no-split

Last Fadure Last Success

Wed Nov 30 04:50:20 EST 2016
Wed Nov 30 05:09:03 EST 2016

Tue Nov 29 002217 EST 2016

Tue Nov 3008 EST 2016

Wed Nov 30 05:30.58 EST 2016

Tue Nov 29 21:31:25 EST 2016

Frocess Flow Executions | T T T

Process Flow Exscations For Difl_Fod_ProcessFlow_Froe AMS,

Weicome. processsdmin

Wed Mov 30 12:00 EST 2016

, | @
Action
Run | View | Execusions | Contiguse
O E| %) %
B % *
0 3% %
0 B % =»
0 B %) &
0B % &
O B % *
O B %) %

Execution

Process Name Process Status Process Execution Start Time Process Execution End Time

cab-457h- 154 38 Di_F

_From_RMS PRACCESS STARTED Moe Mov 38 121220 EST 2016

Appendix F: Process Flow Ul Screenshots 91

Manage Process Flow - Process Flow Configurations

Manage Process Flow - Process Flow Configurations

Process Flow Configurations tab allows to set skip/hold flags on activities in a flow.

ORACLE' Process Flow Admin Console Vigicome, procassadmin
Wed Nov 30 12:03 EST 2016

Process Flow Live [T et L Ll Historical Process Flow Executions | Manage Conligurations | System Logs |

All Process
E 2 | @ |
Process Name Family/Group Applications Flow Type Last Failure Last Success Action,
Fun | View | Executions | Configure
D Frd ProcessFlow From RMS] R ne-splt 0| B &%
DifGrp_Fnd_ProcessFlaw_From RMS DitGrp RXM ne-spit Wed Nav 30 04:50:29 EST 2015 O B % &
InwvaifiWh_Tx_ProcessFiow_From_AMS Invivaih oM no-spit Wed Nov 30 05:09:03 EST 2016 e B % &
lemids_Frd_ProcessFlom_From_RMS HemiHdr R4 no-spit Tue Nov 28 01:22:17 EST 2016 O B % =
Hembnage Frd ProcessFlow From RMS Isemimage 2HiT] nosplt Tue MNav 28 01:30:08 EST 2018 0 B % %
Nemloc_Fred_ProcessFlow_From_AMS llemLoc R o-spkl Wed Nov 30 05:39.:58 EST 2016 0 B % =
MerchHier_Fnd_ProcessFlow_From_AMS MerchHier RikM no-splt 0| B %
OrgHier_Frd_ProcessFlaw_From_RMS Orghiier OO noesplt Tue Kav 28 23:31:25 EST 2016 0 8% %

PFrocess Flow Executions Frocess Flow Configurations | Ry Process Flow Detalls

Procesa Flow Executions For Difi_Fnd_ProcessFlow_Frem RMS:

Activity Name Action Action Expiry Date and Time Cammants Action

lbegin
Diff_Frd_ExtractarActivity sk Actity 0 Hoid Activity procassadmin Save
Dift_Fnd_ExtractorStasusActvity Skip Actily | Hoid Activity Save
D#_Fna_GatDataSatidAstniy Skip Activity || Hold Activity Save

Manage Process Flow - Launch Process Flow

Launch Process Flow tab allows to start a process flow with provided process

parameters.
ORACLE' Process Flow Admin Console Weicome, processadmin
Wed Nov 30 12:03 EST 2016
EEETITIUT| Manage Process Flow | s Flow Exec Manage Configurations | Sysiem Logs
All Process Definitions
Enis - N
Process Name Family/Gray Applications Flow T Last Failure Last Success Htlon
L P! e Run | View | Executions | Canfigure
Dift_Frd_ProcessFlow_From_AMS De AXM no-api OB % =
DiftGrp_Fnd_ProcessFlaw_From_AMS D#fGp RXM ncesplt Wed Nov 30 04/50:29 EST 2016 0| B %) %
ImvAvailWh_Tx_ProcessFlow_From_RMS EvhaiWh AXM no-spkt Wed Nov 30 05.09:03 EST 2016 0| B| % &
ltambdr_Fnd_ProcessFiow_From_FMS Hembdr RXM no-spit Tusa Now 29 01:22:17 EST 2016 O 8| % =
ttemimage_Frd_ProcessFlow_From_AMS ltemimage RXM no-spit Tus Nov 29 01:30:08 EST 2016 0B 0| &
Itemloc_Fnd_ProcessFlow_From_RMS Hembos AXM ne-spit W Nowv 30 05:39:58 EST 2016 0| B| % %
MerchHier Fd ProcessFiow From FMS MerchHier R no-spit 0 8| % x
OrgHier_Frd_ProcessFlow_From_AMS Orghier A no-splkt Tue Mow 29 23:31:25 EST 2016 o B8 % %

Process Flow Execulions Process Flow Configurations [SREILTUR g 20 Process Flow Delails

Pracess Name D#f_Fnd_ProcessFlow_From_FMS

Far eg- e valuel keyhlameZ oy

92 Job Orchestration and Scheduler Implementation Guide

Manage Process Flow - Process Flow Details - Process Details

Manage Process Flow - Process Flow Details - Process Details

Process Details tab displays process activities and configuration in a tabular form.

ORACLE Process Flow Admin Console Welcame, processadmin
Wed Nov 30 12:03 EST 2016

Process Flow Live (IO Ll Historical Process Flow Executions | Manage Configumiions

All Process Delinitions

Er oarch a, | @
Process Name Family/Group Applications Flow Type Last Failure Last Success Action
Run | View | Executions | Configure

Diff_Fnd_ProcessFiow_Fram_AMS =] M ne-spit 0 B % &
DiftGip_Fnd_ProcessFlow_From_AMS Diditirp M o-spit Wed Nov 30 045028 EST 2016 O B % &
InvAvailWh_Tx_PrecessFlow_From_AMS InvAvailWh RXM no-gpdt Wed Nov 30 05:08:03 EST 2015 0B % &
Wermbidr_Frd_ProcessFlow_From_AMS Hembdr XM o-apit Tue Nov 29 01:22:17 EST 2016] 1 % &
Bemimage Fnd ProcessFiow Fram RS Ibemimages R nosaplt Tue New 29 01:20-08 EST 2018 0B % *
ItemLog_Frd_ProcessFlow_From_AMS temLoc Ao no-spat Wed Nov 30 053958 EST 2016 OB % »
Merchier Frd_ProcessFlaw_From AMS Merchhier O no-splil 0 B % &%
OrgHior_Fnd_ProcessFiow_From_FMS CrgHier M no-spat Tue Nov 29 23:31:25 EST 2016 0 B % &

Process Flow Executlons Process Flow Configurations Launch Process Flow [EEEEE SR LT LT T
[T T process 0o |

Process Details:

Precess Name D#l_Frd_ProcessFlow_From_RMS

Process Description

Activity Name Description Current Activity State State Expiry Date
begn HA
Dill_Frnd_ExtractorAciivty Hold HA

Manage Process Flow - Process Flow Details - Process DSL
Process DSL tab displays DSL for the selected process flow.

ORACLE Process Flow Admin Console Wieicems, procassadmin
Wed Nov 30 12:03 EST 2016

Process Flow Live [B Historical Process Flow Executions | Manage Configurations | System Logs

A e
Process Name Family Group Appiications Flow Type Last Failure Last Success ‘:'.m.n .
Run | View | Exeeutions | Configure

Oitf_Fnd_ProcessFlow_From_RMS. oit AXM no-spit O B % %
DG Frd_ProcessFlow_From_RAMS DinGIp RAM no-spit Wed Nov 30 04:50:28 EST 2016 0 B % ®
Imvdvaifh_Tx_ProcessFiow_From_AMS Trnvivaifih M rospit Wed Nov 30 05:09:03 EST 2016 O B %D &
ItemHdr_Fnd_ProcessFlow_From_AMS [eemiHdr AXM ro-5plit Tue Mow 28 01:22:17 EST 2016 OB % #
Ilemimage_Frd_ProcessFlow_From_RMS lemimage AxXM ra-spiit Tue MNov 20 01:30:08 EST 2016 0 B % ®
ltemloe Frd FrocessFlow From RAMS emloc R no-splt Wed Nov 30 05:39:58 EST 2016 0| B % %
Marchiiar_Fnd_ProcessFlow_From_AMS MarchHiar HXM no-spift 0| B % ®
CrgHier_Frd_ProcessFlow_From_RMS OrgHier RN no-split Tue Nov 20 233125 EST 2016 - | %

R |

Process Flow Executions Process Flow Configurations Launch Process Flow | Process Flow Details

I Process Dsl

Process Defintion

//D0 KOT DELETE THE BELOW COMMENT, I
//destinationSystens=RoM
process {

name “Dif{ Fnd ProcessFlow From RMG-

war i |precessFlonType: “no-split®]]

Appendix F: Process Flow Ul Screenshots 93

Historical Process Flow Executions

Historical Process Flow Executions

Historical Process Flow Execution tab allows the user to look at the history of process
flow executions. User can specify a date, a time interval and process status. The
application will list all the process flow executions matching the criteria. User can select
any of the flow to see the activities details of that execution instance. The page also
provides option to view the before and after values of all process variables for each
activity.

ORACLE Process Flow Admin Console Wekaine, pracessadmin
Wed Nov 30 13:48 EST 2016

Process Flow Live | Manage Process Flow [T ENTreerpm-ne] janage Configurations

| Filter By Time: | Filter By Status:
Date and Time: Interval:

© Last 10 mine
© use Current Time Om

Last 1 hour
Use Specilic Time Successful
Last 12 hours
2016+11-30T13:48 Falled
Last 24 Hours
Submit

Process Flow Executions

Process Flow Hame Family Execution id Start Time End Time Duration Status

Manage Configurations

Manage Configurations tab allows to view, edit and create system options. This page
displays the list of system options of the application. User can modify the value of the
existing system options, create new system options and delete the existing system
options. User need admin privileges for editing and creating system options. Search
option based on system options name and value is also provided on this page.

ORACLE' Process Flow Admin Console Welame, processadmin

‘Wed Nov 30 13:49 EST 2016
| Process FlowLive | Manage Process Flow | Historical Process Flow Executions [L WL T | SvstomLogs |

System Optiens |

View/Edil System Oplians

=)

System Option Name System Option Value Action
LOADSEEDDATA FALSE (£40 |
procassFlowAdminBaseUr| = us oracle, com 7011 i pe 1 @@
processFiowhdminBaselriLiser Alias GET_FROM_WALLET:GET_FROM_WALLET (80 |
rmsJobAdminBaseUsl hitp:/imspE2483 us. cracks,com T45 3. rms-balch jot admin 7N |
rmsJobAdrminBaseLiiLiserAlas GET_FROM_WALLET.GET_FROM WALLET @ e
rirnJobAdminBasalit hitp:limepDibes, i aracle. cam:TIES/bi ram-batch-job- admin/ @e
rrndebAdminBaselhiUser Alas GET_FROM_WALLET:GET_FROM WALLET (24N |

Create New System Options

System Option Name System Optian Value Save

94 Job Orchestration and Scheduler Implementation Guide

System Logs

System Logs

The System Logs tab shows all the log files created by process flow execution. Clicking
on the View icon will show the log file contents in the screen.

ORACLE Process Flow Admin Console Waelcome, processadmin
Wed Nov 30 14:43 EST 2016

Process Flow Live | Manage Process Flow | Historical Process Flow Executions | Manage Configurations | E I LI

File Name Size {in KB} Last Modified
WhAGdr_Frid_ProcessFiow From_AMS-system jog 27544 Ved Nov 30 14.23:44 EST 2016
MeschHior_Frd ProcessFlow From RMS.system.log 2509.25 Wiad Mov 30 14-18:50 EST 2015
DGR Frel_Processflow. From_AMS-system.log 863678 Wed Nov 30 14:18:59 EST 2016
Homtdr_Fnd_ProcessFlaw_From_FMS-system.og 485197 Wed Nov 30 14:18:59 EST 2016
ba-gataui lag 600.42 Wad Nov 30 140743 EST 2016
RemLos_Fod_ProcessFlow_From_RMS-system.log 111515 Wed Nov 30 06:56.02 ST 2016
Fnd| ;_ From_RMS-system Jog 730,25 Wied Mov 30 06:16:43 EST 2018
Storedeide Fod_PracessFlaw_Fram_FMS-systam log 206,67 Wed Mov 30 05,5251 EST 2018
InvAvailWh T ProcessFlow From AMS.-system log 545,98 Wed Mov 30 05:14:00 EST 2016

2016-11-30T09:26:17,705 | [ACTIVE] ExecuteThread: '21' for queue: 'weblogic.kermel.Default (self-tuningl’| INFO ProcessExecutorServiceBean - Starting new
process(whiddr Frd ProcessFlow From RMS] appMame(bdl-process-flow-16.9.0.CloudRelaase.var) .

2016-11-30T88:26:17,709 [[ACTIVE] ExecuteThread: '21' for queus: ‘weblogic.kermel.Default (self-tuning)’] INFO ProcessExecutorserviceBean - Finished new
process(whiddr Fnd ProcessFlow From PMS) apphame(bdi-process-flow-16.9.0.CloudRelaase. var) .

2016-11-30T08 17,850 [Thread-292] DEBUG Nat. Impl - pr Fnd Pr From PMS).

2016-11-30T00 17,852 |Thread-292] DEBUG NativeMethodAccessorImpl - Since this 1s first time start so initializing processvariables(|processFlowType:ne-split]).
2016-11-30T89:26:17,854 [Thread-292] DEBUG Loggersdebug - checkBeginCalledFirstAndOnlydnce.

2016-11-30T88: 17,863 [Thread-292) DEBUG Loggersdebug - === = -

2016-11-30T08 17,863 (Thread-292] DEBUG NativeMethodAccessarimpl - begin : start

2016-11-30T89:26:17,891 (Thread-292] DEBUG NativeMethodiccessorimpl - Fire

beforeAct {Activi .oracle. retail bdi.process.dsl.ActivityState(begin-f45a8177-8493-4683-8949- 312038335899, begin,

Whiddr Fnd ProcessFlow From RMS-64466a0f-cbbS-4004-8beb-20a33sa5f56a, 1, ACTIVITY STARTED, wWed Nov 38 80:26:17 EST 2016, null), processvariabless{processFlowType=na-splith}).
2016-11-30T09:26:17,899 (Thread-292] DEDUG ProcessOrchestratorServiceBean - Notify Process Start

Appendix F: Process Flow Ul Screenshots 95

G
Appendix G: Job Admin Ul Screenshots

Batch Summary

This tab shows the summary of the system and details about latest batch job executions.
It can be used to quickly find out whether latest jobs are successful or not. The last
section of this page displays the step summary of the selected job.

ORACLE JOS RMS BATCH JOB ADMIN Welcoma, jobadmin
Thu De< 01 15:26 CST 2018

LR RU Manage Batch Jobs | _Manags Cantigurations | _Syatem Logs

Batch Application System Health Total Jobs Total Executions Total Successiul Executions Total Failed Executions
JOS-AMS (<] 1 1 1 L]

Lates! Job Execulions

A e

Job Name Famity Instance id Execution Id Start Time Status

ShelCommandRunnerBalchiet 1 1 Thu Dec 01 15:25:44 CST 2018 COMPLETED

Exscution S1ep Summary for SheliCommandRunnerBatchliet Execution 1d: 1

Step Execution id Duration Status Resource

1 0 Hours 0 Minutes 0 Seconds COMPLETED jebslaxscutions/l istepst

Manage Batch Jobs - Job Executions

This tab displays the list of available jobs with their details and allows to Start a job,
Restart failed jobs, list the executions of a job.

This tab shows the executions of the selected jobs. It can be used to restart the failed
executions of a job. Restart button is available only for restartable executions in the status
column. When user clicks the restart button it is redirected to the job launch tab with
restart option and pre-populated value of job parameters from last run of the execution.
User can edit the value of the existing parameters and enter new parameters in comma
separated format.

Note: that url is an infrastructure parameter, user is not
allowed to change its value.

Appendix G: Job Admin Ul Screenshots 97

Manage Batch Jobs - Job Launch

Weicome, jobadmin

ORACLE JOS RMS BATCH JOB ADMIN
Tha Dee 01 15:26 CST 2016
|_Batch Summary |RUELETELSELREERIN Manage Configurations 1 System Logs]

|

Al Jaibs Definition
Action
Job Name Family Job Description Execution Count Launch | View | Hons
SheBCommandRunnerBaichist No description avadabie in job e 0B ®

TR ok Launch | Job Definition

Jaib Exeeutions

Page1/1
Sab Nama "‘";"“ E""‘m“""" Job Paramatars Start Time End Time Duration Status
. e urbehitp:1127.0.1.1:15001 fos-tme-balch-job-sdmintescorcesbaich Thu Dec 01 152544 Thu Dec 01 152564 O Mours 0 Minutes D COMPLETED
A T ! b ShebCommandRunneraichiet csT 2018 ST 2016 s

Manage Batch Jobs - Job Launch
This tab can be used to launch the jobs. Job Parameters is an optional input from the user
to launch the jobs. Multiple job parameters can be entered in comma separated value

format.
ORACLE JOS RMS BATCH JOB ADMIN Weleome. jobadmin
Thu Dec 01 15:16 CST 2016
[8aich Summary WL TR “liinoge Conlgumiions | System Logs
Al Jobs Definitlon
Enler job name fo search ale
Action
Job Mame Famity Job Description Execution Count Launch | View | Executions
ShelCommandRunnerBatchiot o description avalable in job file o 0B &
[S1ob Exccutons YRRl 105 Detiniion
dob Launch
Job Name SheliCommandRunnerBalchlet
<Job Description o description avallable in job fle
Job Parameters (Optional) ‘
For ¢: KeyMamel=vakiat keyh amed=valued

Launch

Manage Batch Jobs - Job Definition - Job Details

This tab shows the details of the selected job like Job Description, Family, and Rest

Service Url.

98 Job Orchestration and Scheduler Implementation Guide

Manage Batch Jobs - Job Definition - Job XML Content

Wakome, jobadmin

ORACLE JOS RMS BATCH JOB ADMIN
Thu Dec 01 15:26 CST 2016
LEUEPESENERR uaage Configurations | Sysiem Logs -
ot Mame Family Job Description Execution Count Conas “‘:‘."‘I’"E_!m"m‘
o3 =

SheaCommanaRunnerBachiet Mo description avadable in job e 1

[ot Esecuions | Job Launch T

LU Job XML Content

ShetCommandAurnerBatchiet

Job Name:
Job Descripbon Mo descripton avadabie in job fie
Famiy
Piest Service URL. hitip127.0.1.1:18001 % b ‘balch/jobs ShedCan

Manage Batch Jobs - Job Definition - Job XML Content

This tab shows the details of the selected job XML content.

Walcome, jobadmin

ORACLE JOS RMS BATCH JOB ADMIN
Thu Dec 01 15:26 CST 2016
[Geich Surmary TS TT SR anage Contigurniions | Sysiem Lo
Enter job name lo search = -]
dab Ma Fami Job Descripti Execulion Caunt Attdh
sl ity i AT Launch | View | Executions

ShedCommandRunnerBaichiet No description avallable in job fle 1 0|3 &%

Job Executions | Job Launch |ECSS SN

IR Job XML Content .
Job XML Content

<taml version="1.8" encoding="UTF-8°7>
<job id="ShellCommandfunnerBatchlet” wnlns="http://xalns. jcp.org/xal/ns/ javace” versions"1.6%>

<step id="shellCmd">

ref="shellc Al -
<propertisss
«|-- externalCommand format . comsand paraml .. paranh

parameters can be static or dyanmic
if a parameter iz dynamic, then ute #SysOpt.paraniame.
paranhame should be setup in BOT SYSTEM OPTIONS table

<property names"externalCosmand® values"1s"/»

<l-- externalComandnarkingDir is optional --=

<property name="externalCommandworkingDir® value="."/=

</propertiess
=/batchlet>

Manage Configurations
This tab shows system options from BDI_SYSTEM_OPTIONS table. It allows user to add

new system options.

Appendix G: Job Admin Ul Screenshots 99

ORACLE JOS RMS BATCH JOB ADMIN Walcame, jabadmin
Thu Dec 01 15:20 C&T 2016

Baich Summary | Manage Baich Jobs [T R Gl T (Il System

| System Options |

View/Edit System Options

Er
System Option Name System Option Value Action
LOADSEEDDATA FALSE (T3l |

Create New System Options

System Oplion Name Syslem Option Value Save |

System Logs

This tab shows logs at job and system level.
ORACLE' JOS RMS BATCH JOB ADMIN Walcon, jbadnin

Thu Dec 01 15:20 CST 2016

[System Logs |
Jobs Log Files
File Mame Size{in KB) Last Modified
ShelCommandRanne: Batchiel systom log 81 Thu Dec 01 15:25:44 CST 2016

2816-12-81T15:25: 44,862 [|ACTIVE| ExecuteThread: “8° for queve: “weblogic.kermel.Default (self-tuning}’] INFO JobOperatorServiceBean - Starting job: ShellCommandRunnerBatchlet

2016-17-81T19:2%: 44,636 [[ACTIVE] ExecuteThread: 39 for gueve: ‘weblogic, kerrel.Default (self-tuning)’] DEBUG SystemOptionServiceBean - There is no cached data. Either cache was
reset or this is the first call, fetching the data from the DB

2016-12-01T15:25: 44,678 [[ACTIVE| ExecuteThread: ‘39' for queue: 'weblogic.kermel.Default (self-tuning)'] INFO ShellCommandRunnerBatchlet - Starting commandils) using working
directoryl.}.

2016-12-01T15:25:44,683 [[ACTIVE] ExecuteThread: '39° for gueue: 'weblogic.kernel.befault [self-tuning)'] DEBUG ShellComandfunnerBatchlet - Cosmand arrayi[ls]h.

2016-12-01T15 [Thread-65] DEBUG Shelle Batchlet - ssss sesensaes e seasssaarnes T
2816-12-81T18 [Thread . #5] DEBUG ShellCosmandiunnergatchlet . sssssss HEGIN SYSOUT FOR PROGRAM: s

2816-12-81T15 [Thread-65] DEBUG ShellC Batchlet - === - X ERERAs. N
2016-12-81T15 [Thread-66] DEBUG ShellCommandRunnerBatchlet - sssssssssssasesinis
2016-12-01T15: [Thread-66] DEBUG ShellCommandRunnerBatchlet * BEGIN SYSERR FOR PRAOGRAM: 15

2016-12-81T15 [Thread-66] DEBUG ShellC Batchlet - e ehatanacd
2016-12-817T15 [Thread-65] DERUG Shellc Batchlet - EXT_PROG_SYS OUT:1s: sutodeploy

2016-12-01T15: [Thread-65] REEUG ShellCommandRunnerBatchlet - EXT PROG SYS OUT:1s: bedi batch job infra_create.sql

2016-12-01T15 [Thread-65] DEBUG ShellCommandRunnerBatchlet - EXT PROG SYS OUT:ls: bdi jpal.log

2616-12-81T18 [Thread-85] DEBUG ShellCommandRunnerBatchlet - EXT_PROG_SYS OUT:1s: bdi jpa.log

2016-12-61T15: [Thread-65] DEBUG ShellCommandRunnerBatchlet - EXT PROG_SYS OUT:1s: bdi recelver infra_create.sgl

2016-12-01T15:25:44,778 [Thread-65] DEBUG ShellCommandRunnerBatchlet - EXT PROG 5YS OUT:1s: bin

QRN 17 O1TIN IR0 191 [Thensd 681 NEDUG Ehall EYT_onc eve Autel

100 Job Orchestration and Scheduler Implementation Guide

	Oracle Retail VAR Applications
	Send Us Your Comments
	Preface
	Documentation Accessibility
	Access to Oracle Support

	Related Documents
	Customer Support
	Improved Process for Oracle Retail Documentation Corrections
	Oracle Retail Documentation on the Oracle Technology Network

	Introduction
	Standards and Specifications
	Java Platform Enterprise Edition (Java EE)
	Java Batch
	Java EE Server

	Java Batch Overview

	Job Orchestration and Scheduler
	What is Job Orchestration and Scheduler (JOS)?

	JOS Components
	JOS Architecture

	Job Admin
	Job Admin Concepts
	Job Admin Components
	RESTFul Services
	Batch Service
	Start Job
	Restart Job
	Check Status of a Job
	Inputs
	Error Response
	System Setting Service

	Job Admin UI
	Best Practices for jobs
	Job Admin Security
	Job Admin Customization
	Job Admin Troubleshooting
	Deployment Error
	Runtime WSMException
	Job Fails and Job Admin Log Files Contain No Details of the Failure
	Job admin UI throwing error: Table or view doesn't exists
	IO exception or permissions issue on running a shell runner job
	Missing Credentials Access permission

	Missing system credentials
	Missing system options

	JOS Process Flows
	Process Flow Concepts
	DSL (Domain Specific Language)
	Begin Activity
	Activity
	End Activity
	Process Variables

	Process Flow DSL
	Process Flow DSL characteristics
	DSL Keywords
	Process Flow API
	Process Flow Variables

	Process Flow Instrumentation
	Sub Processes
	Process Schema
	Process Restart
	Statuses
	Steps for implementing a JOS Flow
	Activity Features
	Skip Activity
	REST endpoint to set the skip activity flag
	Hold/Release Activity
	REST endpoint to set the hold activity flag

	Callback Service
	How to start Process Flow with input parameters
	Call back from Processflow
	How to invoke the Callback Service declaratively
	How to invoke the Callback Service programmatically
	Example 1: Short Form
	Example 2: Long Form

	Callback request Payload structure
	JSON Payload Contract
	XML Payload Contract

	Call Back Service Scenarios

	Process Security
	Troubleshooting
	Process Flow Didn’t Start
	Deleted Process Flow Still Listed in the UI

	Best Practices for Process Flow DSL

	Scheduler
	Scheduler Overview
	JOS Scheduler Features
	Scheduler Concepts
	Schedule Definition
	Schedule Execution
	Schedule Types
	Interval Schedules
	Calendar Schedules
	Scheduling Mechanisms
	Simple Scheduling
	Advanced Scheduling
	Schedule Frequency
	Schedule Start Datetime
	Schedule End Datetime
	Recurrence / Repeat Interval
	Schedule Next Run Datetime
	Schedule Timezone

	Schedule Action
	Schedule Action Definition

	Schedule Action Type
	Sync Action
	Async Action
	Schedule Action Execution Status
	Schedule Action Type and Execution Status
	Sync Action Execution Statuses
	Async Action Execution Statuses
	How the Action Execution Statuses are determined?

	Schedule Status

	Scheduler Runtime
	Scheduler Startup
	Schedule Runtime Execution
	Schedule Execution - Async Action
	Schedule Execution - Sync Action
	Schedule Execution Failover
	Schedule Notification
	Scheduler Infrastructure Schema
	Best Practices for Scheduler

	Scheduler Console
	Schedule Summary
	Schedules and Executions
	Upcoming Schedules

	Schedule Executions Failed Today
	Schedule Executions Completed / Triggered Today
	Schedule Executions In Progress Today
	Schedules Past Due

	Manage Schedules
	Creating a Schedule
	Basic Info
	Schedule Action

	Schedule Frequency
	Schedule Notification
	Starts:
	Fails:
	Triggered / Completed:
	Updating a Schedule
	Disabling a Schedule
	Enabling a Schedule
	Deleting a Schedule
	Schedule a Manual Run
	Schedule a Executions
	System Logs

	Scheduler Security Considerations
	Scheduler Security

	Scheduler Operational Considerations
	Users Roles for Monitoring and Administration
	Monitoring Schedules
	Schedule Action Execution Log

	Scheduler Log Files
	Maintaining Historical Schedule Executions

	Scheduler Customization
	Customizing Seed Data Schedules
	Customizing Schedule Actions

	Scheduler Troubleshooting
	Scheduler Known issues

	Use Cases
	How do I create a batch job in Job Admin?
	Sample Job XML

	How do I pass job parameters to a shell script invoked by job?
	How do I pass system options to a shell script invoked by job?
	How do I pass system properties to a shell script invoked by job?
	How do I chain multiple jobs in a single flow?
	Sample Process Flow

	How do I create split flows?
	Sample Split Flow
	Main Flow
	Sub Flow

	How do I create split and join flows?
	Sample Split and Join Flow
	Def Process Flow
	Xyz Process Flow

	How do I create a join flow with other flows?
	Sample Join Flow

	How do I share data between process flows?
	Sample Flow that shares information with other flows

	How do I create a schedule in Scheduler?
	Sample seed data to create schedule
	Schedule Action DSL
	Sample Action DSL

	Security
	RESTful Services
	Sample seed data created during installation

	Pre-Implementation Considerations
	Thread Pool Size in WebLogic
	Database Connection Pool Size in WebLogic

	High Availability Considerations
	High Availability
	WebLogic Server Cluster Concepts
	Scaling JOS
	JOS on Cluster
	Logging
	Issue
	Solution

	Update Log Level
	Issue
	Solution

	Create/Update/Delete System Options
	Issue
	Solution
	Example

	Create/Update/Delete System Credentials
	Issue
	Solution
	Example

	Scheduler Configuration Changes for Cluster
	Cluster Job Scheduler Data Source
	WebLogic EJB JAR XML

	Deployment Architecture
	JOS and BDI deployment architecture for RMS
	JOS Deployment Architecture
	JOS Scalable Deployment Architecture

	Performance Considerations
	CPU and Memory considerations

	Appendix A: Scheduler REST Endpoints
	Appendix B: Process Flow REST Endpoints
	Appendix C: Job Admin REST Endpoints
	Appendix D: System Setting Service
	Managing System Options using curl
	Create system option
	Update System Option
	Delete System Option
	Reset System Options Cache
	List System Options

	Managing Credentials Using Curl
	Create Credential
	Update Credential
	Delete Credential
	List Credentials

	Appendix E: Scheduler UI Screenshots
	Schedule Summary
	Manage Schedules - Schedule Executions
	Manage Schedules - Create Schedule
	Schedule Executions
	System Logs

	Appendix F: Process Flow UI Screenshots
	Process Flow Live
	Manage Process Flow - Process Flow Executions
	Manage Process Flow - Process Flow Configurations
	Manage Process Flow - Launch Process Flow
	Manage Process Flow - Process Flow Details - Process Details
	Manage Process Flow - Process Flow Details - Process DSL
	Historical Process Flow Executions
	Manage Configurations
	System Logs

	Appendix G: Job Admin UI Screenshots
	Batch Summary
	Manage Batch Jobs - Job Executions
	Manage Batch Jobs - Job Launch
	Manage Batch Jobs - Job Definition - Job Details
	Manage Batch Jobs - Job Definition - Job XML Content
	Manage Configurations
	System Logs

